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Hello. Welcome to NPTEL-NOC, an Introductory Course on Point-Set-Topology Part  II.  So,

today we will study Wallman compactification, Module 34. As motivated last time, we shall

make a blanket assumption that the space  is a  space. As before, let  denote the

collection of all ultra-closed filters on . We also have introduced this function phi from X to

, namely,  going to the atomic filter  which we know is an ultra-closed filter, because

 is a  space.

We propose to topologize  so that the pair  becomes a compactification of .

Recall, the compactification is actually an equivalence class, but we keep on saying that you pick

up any representative that is also compactification. And the compactification satisfies that  from

 to whatever space we are taking is an embedding such that the image of that embedding is

dense  in  the  whole  space  ,  which  is  compact.  So,  these  are  the  conditions  for

compactification. I am just recalling that is all. 



So, going towards topologizing , let us introduce some notation here. For each subset  of

, define  to be the set of all ultra-closed filters in  in which  is also a member.  must be

an element of  for each  in .
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The following lemma on this notation is very simple, but very useful also for us. 

(i)  is in  if and only if  is in . So, this is the definition of .

(ii) Empty set plus is empty. (Because no filter contains empty set.) And  is the whole space

.  (Because  all  ultra-closed  filters  in  particular,  all  filters  contain  .  So,  these  are

straightforward.)

(iii)  is equal to . So, this needs a little bit of explanation.  

Take an ultra filter to which  belongs. Then just by being a filter, it will contain both  as

well as  . Therefore, that ultra-closed filter belongs to   as well as  . Conversely, if the

ultra-closed filter contains   as well as   then being a filter it contains the intersection also.

Therefore, that filter belongs to . So, there is no ultra-closed filter involved here; this is

true for all filters. 

But here when you come to open sets, we need to work with ultra-closedness itself.  Namely,



(iv) If  and  are open subsets of , then  is . So, once again if  contains

this element  , then we know that one of   or   must be inside   which is same to be

saying  belongs to  or .

The  converse  part  is  easy.  Once   contains  ,  it  will  contain   which  is  a  superset.

Similarly, if  contains  its superset  will be there. So, this way it is easier. 
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So, this is what I have written down here. So, let us go through. One and two are obvious. Just

set theoretic definition. The third one is what I have seen, I will repeat it.  belongs to 

. By one this means that  is in . That is definition anyway. Since  is a filter, this implies

 and  are inside  because they are supersets. Hence,  is inside .

So, these steps are completely reversible because if  and  are in , their intersection is there.

So, the fourth statement, as I told you, it is a consequence of that proposition which gives you

that if  and  are open subsets and  is there then one of them  or  must be there. So,

this was proposition in 7.64 which was proved separately for ultra-closed filters.
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So, property (iii) especially, just means that the family of all these  ’s, where   is an open

subset of the topology on , is closed under finite intersection. So, that is the important property

for us. So, look at the family  which is the collection of all , where  is ranges over , now.

(I am not taking arbitrary subsets. I am taking only open subsets in .) Look at this collection.

This collection is closed under finite intersection. 

Therefore, it forms a base for a unique topology  on . Namely, all that I have to do is to

take the collection of all arbitrary union of members of , that will be the topology  on . 



So, there are so many ways of giving a topology. We have to justify that this topology is the right

one among all such. So that is the task now.
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The set  with this topology  generated by the base  is a compact -space. 

(We  are  not  so  much  worried  about  -ness,  but  compactness  is  the  first  thing  we  need.)

Moreover, the function  from  to , (which we know is a set theoretic injection already)

defines an embedding of  in . And the image  is dense in .  

So that will complete the statement that   is a compactification of  . Actually, this

theorem says it is a  compactification.
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So, the first thing is to see that  is compact. For any space to be compact, it is enough to

prove that every open cover from a given base, (you fix one base for topology, take any open

cover from that base, members of that base) admits a finite sub-cover. This is a standard result

that we are going to use now.

So, we are fixing this base, . Take a subfamily of  which covers  and let us see that it

admits a finite sub-cover. So, let  be a family of open subsets in X, such that 

is union of all . 

I am making a sub-case here. In case there is a finite subset  of  such that  itself is contained

inside the corresponding  's, then it follows,  by property (iv) and (ii), that   is equal to

 which is  equal to the finite union of  ’s.  We have proved  it  for two at a time in the

statement (iv)  but that can be immediately generalized to any finite number of open sets. That is

what it is.  You take ,  is . So, that will be equal to union . Now, this is a finite

cover. So, we are done.

The second case is, suppose the above is not the case. What is the meaning of that? There is no

finite subfamily of  which will cover . Remember, the ’s are covering . Now, I

am talking about  s being covering  . Why should they cover   and even if they do why

should there be a finite subcover? There is no need. We are not assuming  is compact after all.

So, suppose there is no such finite sub-cover for . So, that case remains. So, that is the case we



are going to address in a standard way. This kind of argument is used several times in topology

especially when dealing with compact spaces.

(Refer Slide Time: 12:20)

So, we are now assuming that no finite sub-family of  covers . By DeMorgan law, this just

means that the complements of members of this family is a family of closed sets with finite

intersection property. No finite intersection of these complements can be empty. So, it has finite

intersection property.

Therefore, there exists an ultra-closed filter  on  which contains the closed filter generated by

this family as a sub-base. Any subfamily of   which has finite intersection property will

generate a filter on  . In this case, it is automatically a closed filter because these are closed

subsets. Every closed filter is contained in an ultra-closed filter and that is what I am denoting by

.

Let us say that this   after all is a member of  , so it must be inside   for some ,

because  cover . What does this mean? By the very definition of , this means this 

is inside  . Remember   is a larger filter which contains the filter generated by the family of

finite intersections of . Therefore, all the  are inside . That is absurd, because in a filter you

cannot have both a set and its complement,  and . So, compactness of  is proved.
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Let us now prove that   is a   space. That comes very easily right now. If it is not a  

space, what does that mean? There exist a pair of points inside , they are now ultra-closed

filters, distinct points means  is not equal to , such that for every open set  in , if  is in

 then   is also in  . (As such I need to say consider open subsets of  , but I can

restrict myself to basic open sets and they will look like ). 



Whenever you take a neighborhood of , it will be a neighborhood of  also. So, there will be

such a pair.  Starting with arbitrary pair  it may not happen, just because it is not a  

space. But for some pair it is happening. That is the whole idea. 

So,   is in   implies   is in  . Now, you take   as a base for   consisting of closed

subsets of , possible because, by definition, every closed filter must have a base consisting of

closed subsets.
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From an earlier theorem, if we take a member  of this base , then the complement which is an

open subset, cannot be in   because the member   is in  . So,   is not in   is the same

thing as saying that  is not in . If  is not in  by this choice  cannot be in  and   is

not in  just means that  is not in .

If  is not in , this is where you have to use this criterion, given any open set ,  or  must

be inside any ultra-closed filter. So,  is not in  implies  which is  is inside . So, what

we have proved here? We have proved that this base  for  is completely contained inside .

Therefore, the filter generated by  viz.,  will have to be contained inside , because  is a

filter.

We started with two ultra-closed filters. So, one cannot be contained inside other or they are

equal.  So,  whichever  way,  you  have  a  contradiction,  because  you  have  started  with  the

assumption that tau hat is not . 

Watch out these arguments carefully. If you are just doing these things with just ultra-filters,

could you complete this? Can you get a contradiction. You keep examining these kinds of things,

to understand really the role of ultra-closed filters.
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To show the continuity of  is the next task and then there will be one more, namely, to show

that  is a closed map or an open map onto its image. That will complete the embedding. And

finally, we have show that the image is dense also. 

So, to show that   is continuous, it is enough to show that inverse image of basic open sets is

open. So, if you take a basic open set, it will look like , where  is an open subset of .

What is  ? Remember, what is  ?   take   to  , the atomic filter. So, start with an

atomic filter, it comes from some point in , because there is one, one mapping. So, 

will consist of all those points  such that  belong to  which is the same as saying 

belongs to  which is, in turn the same as saying  belongs to . 

So,  is just equal the original set . So,  is open. So, continuity of  follows. 

Not only that, you observe that this also means that  is precisely  because inside

 we only have the atomic filters, the atomic filter containing the whole of  just means that

the point  is inside . So, it is .  is equal to  is stronger than just saying 

is continuous. It implies that  is an open mapping onto its image and hence is an embedding.  (I

can use this equation again.) 
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It remains to show that   is dense, but once again it is enough to show that   meets

every member of the base .  is dense means it should meet every non-empty open set. But

inside a non-empty open set, there will be some member of , the base. This follows from the

above equation again.

Take any basic open set .  is , so it is non-empty, over. So, you see that just

this one equation proves density, continuity as well as openness. 
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So, let us complete now the definition of Wallman compactification. As I told you earlier, a

compactification is a certain equivalence class. But here we are usually taking one particular

representative all the time. Anything which is equivalent to this one will be also called Wallman

compactification, in general. 

So, here we are, first of all, we are starting with any  space , we construct this  which

is just the collection of all ultra-closed filters on  with the very specific topology with the base

consisting of  ’s, where   is oan pen subset of  .  So, that compact space along with the

embedding phi of  inside that, this is called Wallman compactification of the T_1 space X. You

can remember that  is automatically .
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So, here are a few remarks. The -ness of  is only used in getting the function  from  to

. Why, because I start with   and then I construct  . But why should   be an ultra-

closed filter? It is an ultra-filter. Why it is closed? That is where I use the  -ness of  . So,

singleton  is closed. So, singleton is a closed base for the whole of . Any atomic filter

has singleton set as a base. So, that is one immediate way to get an embedding of  into 

that we have used.

Automatically  is injective. There is no problem. Whereas, the topology on  is always .

The  -ness of   is not used in this one. One does not know when this topology on  



becomes Hausdorff. Why I am making this comment? Usually, one would like to know, because

we are in some sense obsessed with Hausdorffness. So, would  be Hausdorff under some

suitable nice condition on the topology of ? If it is freely  by putting a little extra condition

maybe you will get this to be Hausdorff.

But here I am saying that one does not know when this topology on  is Hausdorff. So, next

time, we shall continue to study the universal property of Wallman compactification. Remember,

the universal property of Stone-Cech compactification and that is a universal property or even

some kind  of  universal  property  of  one  point  compactification  also.  This  will  be  somewhat

similar to that. Of course, in each case, it will be slightly different. Thank you.


