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Welcome to NPTEL-NOC, an introductory  course on Point-Set-Topology Part  II,  continuing

with the study of filters today Module 33 ultra-closed filters. Filters and ultra-filters on a given

set have nothing to do with a particular topology on , though they control the behavior of all

the topologies on  to a large extent, namely, via the notion of convergence.

Now, we shall introduce a subclass of filters which depend on the given topology  on . So,

that is a difference between these filters and ultra-filters and ultra-closed filters. As the name

says that closedness comes because we are referring to a particular topology  on .
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A filter  on  is called a closed filter if it has a base consisting of closed subsets of . (So, I

started with a topological space  , so closed subsets makes sense.) It is called an ultra-closed

filter if it is maximal in the collection of closed filters on . So, that is the definition of closed

filter and ultra-closed filters.
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Now, if an ultra-filter is closed filter then it is ultra-closed filter, because it is already maximal in

the collection of all filters. On the other hand, you start with an ultra-closed filter then this may

not be an ultra-filter, because it is maximal only in a subclass. So, there may be a larger ultra-

filter which are not closed. So, this difference you have to keep in mind, that is all.

Now, let me have some examples. Singleton   is always a closed filter, because   is always

closed in whatever topology you take on . On the other hand, every filter is a closed filter on a

discrete space, because every subset is closed also. So, you can take the filter itself as a base if

you like, no problem. So, these are some easy examples of closed filters.
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The cofinite filter on an infinite set is not a closed filter. For if it were, then it would contain a

non-empty finite subset because the non-empty closed subsets are the whole space or the finite

subsets. If   is a base, then  is the only element and hence it cannot be the cofinite filter. 

But  the  moment  there  is  a  non-empty  finite  subset,  that  is  a  contradiction,  because  its

complement will be also there. So, conclusion is that this cofinite filter which consists of all open

subsets other than the empty set in the cofinite topology is not a closed filter. So, I have given

you both examples, easy examples of closed filters as well as not closed filters.
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Let  be a  space. Then I can give you more examples. For each x belonging to , consider

the ultra-filter . Singleton {x} being a base for it and singleton  being closed, this  is  a

closed filter. Already it is ultra-filter, therefore it must of ultra-closed filter. Also note that,  

converges to  and  alone. Why, because  contains . 

So, these are the important ones and easily available ultra-closed filters. Of course, you may

expect that there are many other ultra-closed filters on an infinite subsets and you are right. 
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Every closed filter is contained in an ultra-closed filter. So, this is similar to the result that every

filter is contained in ultra-filter. Of course, again the proof is using Zorn's lemma. You have to

verify something. The verification is very easy here also. The proof is as usual appealing to

Zorn's lemma. 

Take  to be the collection of all closed filters containing a given closed filter . Automatically

it is non-empty. 

If Lambda is a chain inside this family , each element of this chain has a closed base,  is a

closed base for , where  is a chain. Then take the union of all the ’s, that family will be a

closed base for the union of 's. This is what you have to verify. Because it is a chain, this is

possible.

Again,  union of  's  is  a  filter  is  easy just  like in  the earlier  case.  So,  it  is  a  closed filter.

Therefore, it is a member of this  and it is an upper bound for . So, that means condition for

Zorn's  lemma  is  satisfied.  Therefore,  conclusion  of  Zorn's  lemma  says  there  is  a  maximal

element in  . Check that it  is maxil in the set of all closed filters as well. So, every filter is

contained in an ultra-closed filter.
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Here is a theorem similar to the theorem 7.52. It is nothing but characterization of ultra-filters,

the three characterizations we had given, we have the following characterization. It  is not so



strong, a little weaker because we have only two of them here, (a) and (b). Exactly similar. Let 

be a closed filter on . Then the following two conditions are equivalent.

(a)   is an ultra-closed filter. (The second one is not with arbitrary subset but only for open

subsets.) 

(b) For every open subset  in  either  or  must be inside .

If this condition is satisfied, it must be ultra-closed filter. Started the closed filter of course, you

do not prove the disclosed filter. Only ultraness is proved. The proof is more or less same, but

you have to see why the openness is coming here. This condition is obviously weaker condition.

It is not for every subset.  After all maximality is also inside the family of closed filters. So that

is the trick. So, let us see. Let us go through the proof correctly.
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(a) implies (b) is not very easy or not very difficult. Start with an ultra-closed filter , let  be a

closed base for that.   consisting of only closed subsets and it is a base for  . Given an open

subset  of , consider the family . That is a closed set. So we have family of closed

subsets.



There are two different cases to be considered.  If  has finite intersection property then

it would form a closed base for a closed filter . Clearly  contains . Since  is ultra-closed

filter, it follows that  is  and therefore,  is in . 

The second case is that   does not satisfy finite intersection property. It does not have

finite intersection property. Then there exist   inside  such that  is empty. That is the

finite intersection property is violated. This just means that  is contained inside . Therefore, 

is inside  also. So, either  is there or  is there. That is what we have proved.  

Now, let us prove (b) implies (a).  
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Suppose there is a closed filter   such that   is contained in  . We want to show that   is

equal to . Let  be a family of closed sets forming a base for . There is one, because  is a

closed filter. For any  inside  suppose this  is not in , I am just supposing, this  is not in

. Then the complement of  must be in  by condition (b). But  is contained in . So, 

complement is in .

 and  both are in  that is a contradiction. Therefore, this  must be inside . Since this is

true for all   in , the  is contained in  F. But B prime generates  , so  is inside . So,

therefore, equality holds. That proves (a). 



So, you see that the proof is more or less the same. But the flavor is different because we have to

use the openness and closeness and so on here. That is all.
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But condition (c)  is missing here. See now you understand why. Last time we put this condition

at the last and then proved (a) implies (c), (c) implies (b) and (b) implies (a). This condition (c)

is nothing but given  inside  ,   is there or   is there in the case of ultra-filters. Now,

similar condition, but slightly different can be expected, but no, this only one way implication is

there. The corresponding condition (c) is not equivalent to being ultra-closed filter.

So, let me state it separately. Do not get confused with the earlier theorem. This proposition says

that suppose  is an ultra-closed filter, then given  and  two open subsets of  this condition

holds. What is this condition?  It is an `if and only if' statement.  is inside  if and only if

 is inside  or  is inside . 
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Assume that  is an ultra-closed filter and  and  are open subsets such as that the union is

inside . We have to show one of them is inside . This is not true means what? Let us examine

that. Suppose this is not true. Then it follows that the complements  and  must be inside .

This not true means what, neither  is there nor  is there. But then the complements must be

there because  is an ultra-closed filter and we can use the previous result. 

Therefore,   which is  nothing but   that  must  be in  .  But now you have a

problem. We already assumed that  is inside , but you are assuming that intersection of

 and  is also there. The intersection of these two is empty. Its complement and this one both

of them cannot be there. That is all.
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By a simple induction, we get the following important result. If  is written as a union of finitely

many open subsets  and  is an ultra-closed filter on , then one of the 's must be in . So,

this is very easy, because what we have proved is that if  and  are open subsets and  is

inside  then one of the  and  must be inside . To begin with, every filter contains the entire

set . 

Therefore, you can just write  as the union of  and the union of 's;  ranging from  to 

Apply this criterion. If  is there in , we are done. Or union of ;  ranging from  to  is

inside . Now applying induction, one of the ' s must be inside .(Refer Slide Time: 17:34)



So, from this one, let  us deduce another important  result here which is a characterization of

compact  spaces  in  terms  of  ultra-closed  filters.  Remember  in  an  earlier  theorem,  we  had

characterized the compact spaces in terms of ultra-filters. Every ultra-filter is convergent that is a

condition which ensures that  is compact and conversely. So, exactly same result is now with

ultra-closed filters. 

A space  is compact if and only if every ultra-closed filter in it is convergent. So, what is the

idea? Let  be a compact space and  be an ultra-closed filter in it. Suppose  is not convergent

to any point. Then you will get a contradiction very easily. Namely, it does not converge to any

point  means none of these  ,  the neighborhood systems is contained inside  .  That  is  the

meaning of that  does not converge at all.

What does this mean? For each point x inside X we have a neighborhood  of  such that this 

is not in , one neighborhood for each point. But when you vary these points, you get an open

covering for . But now  is compact, so you get a finite covering. As soon as you have finite

covering,  this  corollary  says  that  one  of  those  open  sets  must  be  inside  ,  but  that  is  a

contradiction. So, compactness implies that every ultra-closed filter converges to some point. It

may converge to more than one point also, nobody ensures the uniqueness.
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Now, let us do the converse. Assume that every ultra-closed filter on  is convergent. Let  be a

family of closed subsets of  with finite intersection property. We have to show that the entire

intersection of members of  is non-empty. So, that is enough to show that  is compact. So, let

 be the closed filter generated by , because any family which has finite intersection property

generates a filter, but that will a closed filter because this will be members of all this they are all

closed subsets. 

So, we get a closed filter contained in an ultra-closed filter. So, let   be an ultra-closed filter

containing . Let be a limit point of this  , because we are assuming that every ultra-closed

filter is convergent. So, let x be a limit point of . This means that  is contained inside . 



If  is not in  for some  inside  that would have meant that  is a neighborhood of  and

hence  inside  .  But  all  the  members  of   are  inside   and  hence  inside  .  That  is  a

contradiction.  Therefore,   must  be inside   for  every   inside  .  That  just  means that  the

intersection of members of  is non-empty.

So, characterization of a compact space in terms of ultra-closed filters comes out. See, we have

to prove this afresh both ways, because if every ultra-closed filter is convergent this does not

mean immediately that every ultra-filter converges, because there are many more of them. 

On  the  other  hand,  if   is  compact  space,  we  have  shown  that  every  ultra-filter  on   is

convergent, but none of the ultra-closed filters maybe an ultra-filter or some of them maybe,

some of them may not be. Ultra-closed filter does not mean that it is ultra-filter. So, either way it

is not true, but, so we have to prove it fresh. But on the other hand, if you look at the proof, it is

not all that different. Of course, this is a little harder. You have to use closed base etc. 
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A non-convergent ultra-filter is supposed to indicate the presence of a hole in the space which is

making the space non-compact, because if it were compact then every ultra-closed filter would

have been convergent. So, for a non convergent ultra-closed filter on , there is no space for it to

be convergent,  that indicates there is a missing point in the space. So and that must be making it

non-compact.



So, this idea is similar to the presence of non-convergent Cauchy sequences in an incomplete

metric  space.  A  metric  space  incomplete  means  there  is  a  Cauchy  sequence  which  is  not

convergent. So, non convergent Cauchy sequence indicates there are holes inside a metric space.

Following a similar track as in the case of completion of a metric space, we may try to fill up

these gaps by including all ultra-filters on  along with points of . So that could be one way of

looking at it. But then you are warned already by the above theorem that you do not need all

ultra-filters. If all ultra-closed filters are convergent, then the space will be compact. Therefore, it

should be possible to get a compactification by just taking care of all the ultra-closed filters.

So,  just  the ultra  closed filters  should be enough to  fill  up all  the  holes.  These  are  all  just

surmising, I mean we are just loud thinking, this may be true and that may be true etc. Finally,

you have to prove all this. 

Let us concentrate our attention on the set  of all ultra-closed filters on . Let us not give

up this idea. That is all. We have to work of course. So,   is nothing but set of all ultra-

closed filters on .
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Next, going back to the analogy again of completion of a metric space, recall that eventually

constant  sequences  correspond  to  points  in  the  space  itself.  If  you  have  some  sequence

 and all   for all  , that sequence is automatically convergent to  .

What will you do in the completion? The element  was identified with this Cauchy sequence or

the other way around, whichever. 

So there was a map from the space  to the collection of all sequences. And then of course, we

introduced an equivalence relation on this collection, and so on. So, that was the idea. 

So, we can try to do something similar here. Instead of sequences first of all you have can pass

onto nets. Then eventually constant nets is the key word now. On the other hand, we do not want

to work with nets, but we will use the bridge from nets to the filters which we have defined

earlier. 

So, what do we get? If  is an eventually constant net, what is the corresponding ’s? that will

be the  singleton atomic  filter  .  So,  you see we are  coming to  this  atomic  filter  ,  it  is

supposed to represent a prototype of eventually constant sequence that is the whole idea. That is

how it is convergent also all the time.

In our definition, it is also an ultra-closed filter provided  is  . Till then we do not need -

ness. All   are closed filters if and only if   is a   space. That brings us to make a blanket

assumption that our space  is a  space, because we just do not want to give up this , the



set of ultra-closed filters. So, we better assume  is a  space before we go further. In which

case all atomic filters will just correspond to the points of . 

So, this way   can be thought of as a set which contains   via this embedding, via this

injective mapping, by this identification  going to . So, we have enlarged our space . What

remains is to put some topology on this one so that it becomes compact. That is the first thing.

Then we must examine that the map x going to  which is injective is also continuous and an

embedding of  in , so that the image is dense. This is all we have to do. 

It is also clear that each  converges exactly to one single point that is very important for us.

That is an extra bonus though. We were not bothered about that to begin with. But that is because

of some strange reason. There is no -ness or -ness involved in it. We do not want to bring the

-ness here at all. See usually a filter will converge to a unique point if you have a Hausdorff

space. That is not the reason here. These are very special filters  's; they will converge to only

one single point. 

We cannot expect such uniqueness behavior by other ultra-filters unless we are ready to make

further restrictions that   is Hausdorff. So, therefore, it seems that we may need to introduce

some kind of equivalence relation on the set  so that the equivalence classes may be better

qualified to become a compactification just  like in the case  of  completion of metric  spaces.

Luckily, it turns out that we do not have to worry on this point. 

This process of compactification is much simpler than the construction of a completion of a

metric space. That is going to be the topic of discussion for us now, which we shall carry out in

the  next  module.  So,  this  is  the  motivation  for  considering  the  so  called  Wallman

compactification as we will do next time. Thank you.


