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Hello. Welcome to NPTEL-NOC An Introductory Course on Point Set Topology. Today, we will

continue  with  our  study  of  filters,  especially  ultra-filters  today  in  Module-32.  As  an  easy

consequence, today we are going to derive another proof of Tychonoff's theorem. 

Start with any set . By an ultra-filter on , we mean a filter which is not contained in any other

filter. In other words, in the family of all filters partially ordered by the standard inclusion, ultra-

filters are maximal elements.
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All atomic filters , for , are ultra-filters. However, there can be other ultra-filters also,

you never know. Remember, this  means all subsets of  which contain the . If we have one

more member there, that means that member does not contain , and then singleton  and that

member would have intersection empty. That is not allowed. Therefore,  is maximal. That is

the idea. 

So, these atomic filters do play an important role.
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Every filter is contained in an ultra-filter. So, this kind of result we are now very familiar with

follows from using Zorn's lemma. What we do? Start with a filter , look at the family  of all

filters  on  X which  contain  the  given filter  .  This  family  is  partially  ordered  as  usual,  by

inclusion. If   is  a  chain in  ,  then the standard arguments  will  give you that  union of  all

members of this chain is again a filter which will contain all of members of the chain.  Therefore,

that will be an upper bound for this chain. Now, you can apply Zorn's lemma, to conclude that

there must be a maximal element in .
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As everywhere else, the existence of ultra-filters is assured by Zorn's lemma, but Zorn's lemma is

a very strange thing. Even though nobody may be able to explicitly display one such, we are

guaranteed that  they exist.  This  is  not  a  joke.  For example,  consider  an  infinite  set  and the

cofinite filter that you have considered, namely, the collection of all non empty subsets such that

their complements are finite. (You leave out the empty anyway.) 

So, that is a filter. Clearly, it is not an ultra-filter. It is not maximal, you can put extra elements

there. Of course, you have to be careful. But apparently nobody knows an explicit example of an

ultra-filter containing it. Zorn's lemma says that there is one. In fact, there will be many. But you

know you would to construct one explicitly!
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Let   be any set and   be a filter on it.  Then the following statements (a),  (b), (c) are all

equivalent. So, we have two different criteria other than the definition (a) which are equivalent to

the definition. So, in all, we will get three definitions of an ultra-filter. 

(a)  is an ultra-filter. 

(b) For every subset  of  either  or  belongs to . (Both of them cannot be there, that we

know.) So, is quite a strong condition.

The third one is a weird one, but this is quite helpful also. 

(c)  and  are subsets of  with the union belonging  implies  or  is inside . 

(Remember by the very definition of filters, if  is there or  is the there, union would be there

already, because any super set will be there. But now some super set is there which has been

written as a union of two of its subsets. Then one of them must be inside . So, this is another

condition for an ultra-filter.

Let us prove this one in a different order. For some pedagogical reason which you will come to

know later, I have put these statements (a), (b), (c) in this order. Maybe I should have put (a)

first,  (c)  second  and  then  (b)  third.  But  in  my mind,  (b)  is  easier  to  understand,  after  the

definition (a)  of ultra-filters. The definition of ultra-filter itself is easy to understand, namely, it



is a maximal element. It is one of the maximal elements. So, that is easy to remember. And then

this (b) is simpler than (c) and easy to remember also.

(Refer Slide Time: 07:05)

But, while proving their equivalence,  I will find it economical to do (a) implies (c) implies (b)

and then (b) implies (a).

So, first assume that  is an ultra-filter and union of two subsets is inside . First we claim that

either   or  has finite intersection property. If this is not the case, then we get



two subsets  and  inside , subsets of , but they are members of , such that  is

empty  and   is  empty,  because  each  of  these  families  violates  the  finite  intersection

property. The original family  has finite intersection property. Only because you have put the

set  here and  there, it violates the finite intersection property. That just means that there are

members  and  as described above. 

But then look at  which is already a member of . That is the hypothesis here. Intersect it

with  . See   and   are both elements of  . Therefore,  their intersection is also an

element  of  .  So,  look  at  this  intersection.  This  is  one  member.  These  two are  two other

members.  Take their intersection, that is also a member of . So, this finite intersection this is

nothing but  . The first one is just   because   is empty. Now

the whole thing is equal to  which is empty because  is empty. 

That is a contradiction. 

So, it follows that one of these two families has finite intersection property. Any family with

finite intersection property will generate a filter.  

So, one of them will generate a filter that will contain  and either A or B or both. Since  is

maximal this proves that   must be inside  or  must be in . Here, it is not either   or  ,

both of them may also be in . That I do not care. So, statement only says that  or  is inside

 not just only one of them.  
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(c) implies (b) has one line proof. What I can do? I can take  to be , then  is the whole

set  which is already in . Therefore, I can apply statement (c)  to conclude that either  or 

belongs to . Of course, this time we do not add the phrase `both of them'. So, (c) implies (b) is

very cheap. That is why I have proved (a) implies (c) first. Now, let us prove (b) implies (a).

Suppose  is not maximal. That means what? there is a filter  containing  properly. So, take

a member   in  , a member which is in   but not in  . Now, (b) implies that  , the

complement of  must be inside , because  is not inside . 



Therefore,  is inside  also, because  is larger than . But then both  and  are inside 

. That is a contradiction. So,  must be equal to , there is no other choice. 

Therefore, we have proved (a) implies (c) implies (b) implies (a). The proof of the theorem is

over.
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As a corollary, we prove something very, very important; very, very useful also. 

Take any ultra-filter  on  and take a function  from  to . Then  is an ultra-filter on

.

So, ultra-filters  behave very nicely.  No condition on  .  Remember,   is  a  unique filter

contains  for all . It is generated by all those things.

In fact, all that you have to do is take all super sets of  where . So, that is a definition

of check. So, let us see how this comes.
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All that I have to do is to use the criterion (c). Actually I will use criterion (b) here. Let  be a

subset of , we have to show that either  or  is inside .

Take . That is subset of . Since  is an ultra-filter,  or  is inside . If  is

inside  ,   is  inside  .  But we know that   is  contained inside  ,  because   is

. Therefore,  is inside . The other case is, suppose that  is inside . Then

 is inside , just by the set theoretic definition. Also,  contained in  .

Therefore,  being  a  superset,   will  be  inside  .  So,  we  have  shown  that   or



complement of  is inside , for an arbitrary subset  of . That means  is an ultra-

filter.
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Now,  be a topological space,  be an ultra-filter on . Then every cluster point of  is a limit

point of .

Remember,  for  a  filter  every  cluster  point  was  a  limit  point  of  a  sub-filter  .  What  is  the

meaning of a sub-filter? Sub-filter is a filter which contains the given filter. But   is an ultra-

filter, so there is no larger filter than that one. 

Therefore,  itself is its subfilter for which  is a limit point.

I repeat, if  is a cluster point of , earlier you have seen that there is a sub-filter  for which 

is a limit point. Sub-filter means what, containing  . But   is ultra-filter, so there is equality

here, over.
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A topological space  is compact if and only if every ultra-filter in  is convergent. 

So, we have arrived at a very good theorem, by combining various earlier remarks. So, let me go

through all these earlier remarks and theorems. 7.40 has actually three parts there. Theorem 7.50

and above theorem and theorem 7.46 which characterizes the compact spaces in terms of filters.

If you do not remember maybe I should start just recalling this one.

So, first let us look at this remark, which says that if  is contained in , then  converges to 

implies  also converges to . Conversely, if  converges to , then  is a cluster point of .

So, this is what just we have used. We will keep using this one again.

So, the next we have this one, every filter is contained in an ultra-filter. So, that also you will be

using. Next, we have this criterion for compact spaces that every filter is a cluster point or every

filter  has  a  convergent  sub-filter.  And  finally  we  have  this,  just  now we  have  proved  this

theorem, namely, for an ultra-filter, a cluster point is a limit point.

So, if you combine these things, what you have is the following:  Start with a compact space 

and let  be an ultra-filter on . As a filter,  has a cluster point. But just now we have proved

that  being an ultra-filter, a cluster point must be a limit point. So, one way is over.

The  converse  is  slightly  more  complicated.  Suppose,  every  ultra-filter  on   is  convergent.

Starting with my filter , we can put it inside an ultra-filter . Just now I quoted that theorem.



Being an ultra-filter,  has limit points. But limit points of  are cluster points of , by remark

7.40, which you have just seen. Therefore, again we apply this theorem 7.46, every filter has a

cluster point. So that is, that condition is equivalent to say that  is compact.

So, what we have a neat theorem here now: A space is compact if and only if every ultra-filter is

convergent. 

Later on we will improve upon this one. One more improvement is there in a special case. I will

come to that one soon. I am just preparing your mind for such an improvement.
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Now, we will prove Tychonoff's theorem in a very easy way, in a very canonical way. Recall,

what is a Tychonoff's  theorem? If you have a family of compact spaces  then the product is

compact and conversely. The converse part is easy and just put in the statement or completeness,

that is all. That is not part of Tychonoff's theorem actually, because that can be proved much

easily. Everybody knew that before Tychnoff. Namely,  under a continuous function, image of a

compact space is compact. The projection maps are continuous. So, each  will be compact if

the product is compact.  Our aim is to prove that if 's are compact then  is be compact. So,

what we should do? Prove that every ultra filter  on this product is convergent.



For each  look at . Just now we prove that that  is an ultra-filter on  But  is

compact so it converges to some point  inside . Now, it is a matter of easy verification, using

the product topology here, that this point x whose -th coordinate is  is the limit point of .

See, what you have to show? The neighborhood system  of   is contained in . That is the

meaning of a filter converging to a the point . So, maybe I will leave this as an exercise to you. I

mean,  there is no difficulty but you have to write down the details, that is all.
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Unlike the case of topologies, it is easy to determine all filters and ultra-filters on a given finite

set. You might have known that the study of finite topologies is indeed not a part of point set

topology at all. As such, it is a topic in number theory, or combinatorics.  It has quite a different

flavour.  And as  far  as  topologists  are  considered,  to  some  extent  it  provides  some  counter

examples that is all. Beyond that topologists do not use it much. But the problems are there. And

it is easy to find problems but difficult to find solutions here, of course. 

So, here, similar questions if you ask for filters. And then you can combine them also. So, I am

going to tell you one single example of such problems, namely, counting the number of filters

and ultra-filters on a finite set. That is very, very easy. Suppose  is a filter on , where  is a

finite set. Then you can take intersection of all its members that must be a member of  . Of

course, this must be non-empty because it is a finite intersection. And it follows that that member



 is contained inside every other member which just means that  is , the atomic filter. Once

 is there, all supersets are there, everything is there already, so  must be , the atomic filter.

So, every filter is like that. Means what? There is a one to one correspondence between non

empty subsets of  and the filters on . 

So, if you throw away the empty set, you exactly have   number of filters on a set with 

elements.  Similarly,  let  us  look at  when  is  this  filter  an  ultra-filter?  That  is  also  easy.  The

moment there are more than one point in ,  would not be an ultra-filter, because I can take a

smaller one, say  and that  will contain this . 

So, there are larger filters. Therefore, the only ultra-filters are  , where   is a singleton. So,

how many singletons are there? Precisely  of them. Over. So, that is just for getting a flavor, but

I just want to tell you that I myself am not an expert in these kind of things. I want to ensure that

there you can find many interesting questions here, but answers may not be easy.
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On the other hand, if  is an infinite set then the answer is much more difficult anyway. We do

not know all the filters nor all ultra-filters on a given set. In particular, take a countably infinite

set, say, natural numbers. Even there, we do not know. As observed earlier, we do not know an

explicit example of an ultra-filter which contains the cofinite filter on the set of natural numbers,

or on any countable set.
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So, one more remark here. Suppose a filter  contains a subset  . Then obviously, the atomic

filter   is contained inside , because  contains all supersets of . Suppose further that no

proper subset of  is contained inside . (See  may have even smaller subsets after all.)  Then

what happens, given any  inside ,   is there,   is there,   is there, but   is not a

proper subset of  just means that  is already contained inside . Therefore,  must be .

As a special case, assume that   contains a finite subset. Then clearly we can choose   to be

such that cardinality of   is the smallest amongst  all finite subsets belonging to  . It follows

that once you choose   of that smallest cardinality, just cardinality smallest, it follows that  

must be  . So, you cannot have several subsets   such that all of them have the same finite

cardinality. That is also clear anyway.

So, in particular, we have proved that every ultra-filter which contains a finite subset must be an

atomic filter. So, this is something I would like to say, some attempt trying to understand what

are ultra-filters are on an arbitrary set. So, the darkness is still there. Once you do not have this

hypothesis, namely a filter which may not contain any finite subset then you would not know

how to characterize them. So, let us stop here. Next time, we will study ultra-closed filters.


