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Hello,  welcome  to  module  31  of,  NPTEL  point-set-topology  part-II  course.  So,  having

studied some general properties of filters, today, we shall study convergence properties of

filters. For that, we start with a topological space, not just a set. Remember that a filter can be

talked about on any set, whereas now we have a topological space . 

Let  be a filter on . A point  of  is called a limit of  or you can say it is a limit point,

no problem,  with respect to the topology tau (limit points will not be spoken about unless

you  have  a  topology,  that  is  important),  if  the  neighbourhood  system,  the  entire

neighbourhood system  the neighbourhood set of all neighbourhoods at the , that itself is

contained in the filter . In this case, we also say that  converges to . Similarly, we define

x to be a cluster point of  if every member of  intersects every member of . 

So, here, you can see that this is a weaker condition than that one, because if  is contained

in , then this property is also true because  itself has finite intersection property. So, that

is a weaker condition. 

Indeed,  both  these  definitions  are  copied  from  what  happens  in  the  case  of  the  filter

associated to a sequence and  is either a limit point or a cluster of that sequence.
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Some observations, which are, immediate from the definition are the following: 

(1) If you have one filter  contained in another filter , then  converged to  implies 

also converges to ; the larger filter so-called larger filter also converges to . Conversely, if

 converge to , then you cannot say that  converges to , but  will be a cluster point of

. So, that is a weaker condition. 

For this reason, the bigger filter is called the sub-filter. So, this is a bit strange terminology,

which you have to digest, which you have to live with, because this is borrowed from what

happens to sequences and subsequences. If we have a sequence which converges to a point

then every subsequent will also converge the same point. If a subsequence converges, then

the point of convergence of subsequence will be only a cluster point of the original sequence. 

(2) Secondly, every limit point is a cluster point that I already told you, because being a

cluster  point  is  a weaker condition. But the converse is  not  true,  just  like in  the case of

sequences. So, we shall not bother to discuss it any further. Limit point is a cluster point,

cluster point need not be a limit point. 

(3) The third observation is that suppose  is a limit of a filter. If  is any member of , then

x will be in the closure of that member,  belongs to . This is very easy to see, but I have

added, explanation here. 

If not, what happens? if  is not , that will mean  is inside the complement of , which is

open, which means  is in  which is contained in the filter. So the filter has two disjoint

members, contradicting the finite intersection property of the filter. So, a limit point is the

closure of every member. 
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There is one more important remark. In fact, it has three parts here and we will use them. So,

pay attention to this one.

(i)  Now I have a net which is a generalization of a sequence. Start with a net  from  to ,

where  is a topological space. Let us consider , the associated filter. Then the first thing

you can check is that  belonging to  is a limit point of  if and only if  is a limit point of

 considered as a net. 

(ii) The second thing is that  a cluster point of  if and only if, it is a cluster point of  as a

net. So, this is precisely what I already told you that both the definition of limit point and

cluster point have been copied from what happens to the associated filter from a net or a

sequence. 

(iii) The third one is very important here. The association  to  has the naturality property:

for any function  from  to . We have  is equal to the filter associated to the net

. 

You take  that is another net on . The associated filter on  is nothing but . 

So, (i)  and (ii)  were easy to verify.  The third one is  actually a general  property and has

nothing to do with the convergence. So, I should have done it earlier. In any case, let us check

it. So, I will take some time. 
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So, here is the proof: Start with any subset  of . The function  is from  to . So, things

are happening inside . So, take a subset   of   it is in   if and only if (by this by

definition of  ) if and only if there exists a subset   belonging to   such that   is

contained  in  .  (So,  that  is  the  definition,  how to  generate  .  It  contains  all  the

supersets of all the images of members of  under the map , that is the definition.  

 Now this is same thing as saying that there exists  belonging to  such that  (what you

call the right ray of )  is contained inside , that is the this first part, viz.,  belonging to 

and the second part,  is contained inside  as it is. 

But this is same thing as saying that there is  inside  such that  is contained inside 

because  is inside , which is contained in . 

So, that like saying that the right ray of , viz.,  is containing inside . So, that is

same thing as saying that B is inside the associated filter of  . That is all, a purely set

theoretic result. There is no topology in this one, but this will be useful. So, this is important

and this association  to  is going to be very important. It is a one-way bridge from nets to

filters. The filters have much more generalities. You cannot always come back to the nets

from filters.  
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So, now let us come back to the study of limits and cluster points.

A point in  is a cluster point of a filter  if and only if there's a subfilter  of  i.e., 

containing  I will read this as a subfilter, such that  is a limit point of .  

Here, I am actually giving you the converse part as well, since `if' part, we have already seen,

in the earlier remark.

To  see  the  `only  if  '  part,  suppose   a  cluster  point  of  ,  this  just  means  that  the

neighbourhood of system  has finite intersection property. See within,  or within ,

we have finite intersection property. So any member here will intersect any member there, is

the same as the union hving FIP. We can then take  to be the filter generated by this family.

Any family with finite intersection property will generate a filter. Namely, you now take all

super sets of each member of that family. That will be our . I have to produce one, there

exists some filter. there may be many more. No problem. 
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The next theorem is about functions. Take two topological spaces and a map from  to .

Let  belong to  be any point. Then the following conditions are equivalent: As I told you

this is about the continuity of functions, giving a characterization in terms of filters. So, start

with any function. Take a point  in the domain. 

(i)  is continuous at . (This is the first statement. Second one is)

(ii) for every filter  on  which converges to , we have  converges to . (This is

the second statement. The third statement is) 

(iii) for every net  from  to  converging to , we have  converges to . 

So, these are three statements. The theorem is that these three are equivalent. Part of it I could

have proved while doing nets, but I deliberately postponed it because it can be done much

easier now, once you go along with the filter as well. So, the three conditions are equivalent

is the statement of the theorem. So, as usual we will prove (i) implies (ii) implies (iii) implies

(i). That is what our plan. 
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.

Assume that  is continuous at . Now take a filter  which converges to . This is the same

thing as saying that  is contained in . Let now  belong to . I have to show that 

belongs to  . That is what I have to show. Start with a neighbourhood  of  . By

continuity of  it follows that there is a neighbourhood  of , such that  is contained

inside . That is continuity. 

But now  is in , and  is contained in . Therefore  belongs to . Over. So,

that just means that  converges to . So, (i) implies (ii) is over. Let us do (ii) implies

(iii). 
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For this we use remark 7.41 both (i) and (iii). So, let me just show you 7.41. First one says

that something is a limit point of  iff it's a limit point of . So, this is the, statement from a

net to the associate filter and back. The third one says that the associated filter of  is the

same as . 

So, both of them will be used now. So, let me go back to the proof of this  (ii) implies (iii).

Start with a net  from  to , converging to a point . Then we know that the filter

associated to  also converges to . Statement (ii) now implies that  converges to 

. But this filter is the same as the filter associated with . Therefore, by (ii) of the remark

7.41, this implies the net  converges to   So, we have proved (ii) implied (iii).
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Now let us go to the proof of (iii) implies (i). So, here we prove it by contradiction. Namely,

suppose  is not continuous at . Then we will construct a net  in  which converges to x

but  does not converge to . So, that is the way we are going to prove (iii) implies (i).

Start  with the assumption that   is not continuous at  . This just means that there is one

neighbourhood  of  such that for no neighbourhood of  of  will be contained

inside , which is samething as saying that for all , intersection of  with  is

non empty. Now I choose my directed set   to be and   itself with its usual reversed

inclusion as the direction. Remember that. Now I am going to define the net  from  to 

such that each  is chosen from this non empty set, .  is

non non empty. It just means that there is some point in  . So, we have got

such a function . So, that function is going to be our net. So, what is the property of ? For

each  inside , (  is nothing but ),  is inside  as well as inside  also. Since

 ranges over . From this we claim that  converges to . 

For that we have to show that  is eventually in every neighbourhood of . So, let  be any

neighbourhood of . Choose  itself as a member of D. Now if  follows . i.e., if   is

contained inside , then  is inside  and hence inside . So, this means  inside .

Thus, we have shown that  is converging to . 

On the other hand, it is very clear that   belongs to  , for all  .   is fixed

neighbourhood of  ,   should have been inside eventually inside   but not possible



because all the time, for all  , f  is  inside , outside . So, this means that

 is not converging .  
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So, these were some fundamental properties. Now we shall prove some useful corollaries to

these things, about convergence properties in products. 

Take a family  of the topological spaces, and take  to be the product of all 's. Let 

be a filter on the product. Take a point   inside the product. The filter   converges to this

point , if and only if, look at all the projection maps, 's, look at the image filters, ,

look at the point  in  what we want is that for every  is a limit of .

So, this is `if and only if'. One way, we have already seen, namely, because  are continuous

functions. The general  statement we have proved is that if   converges to   then  

converges to , take . 
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So, `only if'  part we have seen. Now we come to the `if' part. 

Let  us  now  suppose  that   converge  to  ,  for  all  .  This  means  that  the

neighbourhood system at  in the topological space  is contained in the filter .

This is happening for all . But what we want to show is that the neighbourhood system at 

in the product space,  should be contained in  . For this it  is  enough to show that  some

subbase for  is contained in .

Now  you  have  to  remember  what  is  the  product  topology.  In  the  product  topology  a

neighburhood system at  is generated by a subbase viz., , where  range

over all the neighbourhoods of . Finite intersections of such members forming a local

base at  etc.

Once a subbase is inside  , finite intersections will be there and anything bigger than that

will be also there. So, whole,  will be there. So, that is why it is enough to show that some

subbase for  is contained in . 

So, I have to show that for each  belongs to  for all  in  and for all . 
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So, that is very easy. Look at (26), whatever we have, that is enough. This one is contained

inside this one. So, what is definition of the ? That is what I have to interpret. That

implies  that  there  are  finitely  many  members  of   say,   such  that  such  the

intersection 's is contained in . 

Because these images under  form a subbase for ; take finite intersections and then

all the supersets. So, intersection 's is contained in the . I am applying  on both

sides  here.  I  can  just  say contained  in,  not  equality  which  is  not  needed  either.  This  is

contained inside this one. Therefore  belongs to . 
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So, next, we have a theorem:



A topological space  is Hausdorff, if and only if, no filter  on  converges to two distinct

points of . 

Remember when we defined a limit of a filter, we did not say that the limit is unique. There

may be many limit points. In general. But you take a Hausdorff space, then a filter can have

at most one limit point. That is not just the point. The point is this statement is `if and only if'.

We  get  a  characterization  of  Hausdorff  spaces.  Maybe  this  is  the  fifth  or  sixth

characterization of a Hausdorff sapce. Remember that we had several  characterizations of

Hausdorffness in Part I.  This Hausdorffness being very important, it will keep coming again.

So, a topological space  is Hausdorff if and only if, no filter  on it converges is to more

that one point. 

(Refer Slide Time: 27:44)

So, let us prove this one. Suppose  is not equal to  in , and  converges to  and . Then

what happens? Both  and  are inside . On the other hand, if  is Hausdorff then there

exists  in  and  in  such that  is empty. So both  and  are inside  That

cannot happen because then empty set will be inside . That means that .
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For the converse, suppose  is not Hausdorff. Then I will produce filter, which will have two

distinct limit points. So, not Hausdorff just means that there are points  and  not equal to

each other, such that every member of   intersects every member of .

This just means that   union   has finite intersection property. As soon as family has

finite  intersection  property,  we  know  that  it  is  contained  in  a  filter.  Namely,  the  one

generated by this this family. So, that filter will have both  and  as limits because both 

and  are there. That is all. 
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Finally, we have this big theorem here.



Let   be  any  topological  space.  Then  the  following  conditions  are  equivalent.  (Like

Hausdorffness has the many characterizations we want to characterize compactness also). 

(a)  is compact. (That is the first statement.) 

(b) Everybody filter on  has a cluster point.

(c) Every filter has a convergent subfilter. (These are about filters. And I have promised you

to do the similar things for nets also. So, two different characterizations of compactness here,

similar ones with nets now.)

(d) Every net in  has a cluster point.

(e)  Every net in  has a subnet which is convergent.  

So, statements (a) (b) (c) (d) (e) are equivalent. These give you four more characterizations of

compactness. 
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What we have already proved is (b) implies and implied by (c). Look at this. Every filter has

a convergent subfilter. Limit of a subfilter is a cluster point. And converse this part also we

have seen. Similarly, for net also, (c) implies and implied by  (d), this much we have seen.

So, we shall now prove (a) implies (b) implies (d) implies (a). Automatically (c) and (d) will

be taken care. So, let us prove (a) implies (b). 

Suppose  is a filter on  with no cluster points, then I have to show that  is non compact.

(So, that is the contrapositive of (a) implies (b).) This means that for every  inside , there

is an open neighbourhood  of  which does not meet some member  of . So, there is

one member here, and one member here which do not meet. 

That is the negation of saying that  has cluster points.  

By compactness of , we get a finite collection  such that  cover the whole

of , because, union of all 's forms an open cover for . So, take a finite sub. But then you

look at the intersection of all  . Corresponding to each  , you have members   of  ,

finitely many of them. Their intersection must be empty. Because this intersection has empty

intersection with each  and hence with their union also, which is the whole of . So, the

intersection of 's is empty, which is absurd because these are finitely many members of a

filter. So, that is not possible. 

(It  is  not very hard to prove it  directly also,  you can try to prove it  instead of proof by

contradiction.) 
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So proof of  (b) implies (d) now. So, I have to go to nets now. Starting with a net , consider

the filter . By (b) this filter has a cluster point. This is the same thing as saying that  as a

cluster point  as seen in 7.1. 

Finally, I have to show that (d) implies (a). So, for this we have to work harder, so, please pay

attention. 

(So, this way, I  am, I am saving time for instead of proving (b) implies (a) and then (d)

implies (a) etc. This is easily done.) 

Start with a family  of closed subset of  with finite intersection property. We have to show

that the entire intersection of members of , is non empty. That will show  is compact. So,

the argument is similar to one of the previous examples.) 

Consider the family  of intersections of finitely many members of , which is directed by

the reverse inclusion. 

In particular,   contains . All the members of  are closed subsets. By the way, you take

the reversed inclusion as direction on , so, that is the direct set for us.

Since  is contained inside  and I want show the intersection of members of  non-empty, I

am actually going to show that intersection of all the members of  is non-empty though this

is the intersection on a larger family. The intersection will be actually is smaller. If this itself

is non empty, then that will be also non empty. 



Now, look at members  of , they are non-empty by definition because I have taken finite

intersection of members of , which has finite introduction property. So, we can take the net

 from  to   to be such that   is inside   for each  . (So, once again, here we are

using axiom of choice.) 

 Suppose  a cluster point of . We claim that  is inside  for all  inside . 

(This, we have actually seen before. I will repeat it because you might have forgotten how it

came.) 

Suppose this is  not  true.  Suppose   is  not  inside some member   belonging to  .  Then

 is a neighbourhood of  , because each member in   is a closed subset. That is the

point. It is a neighbourhood of x, hence by the definition of a cluster point, there exist an E

belonging to   such that  for  all  members   which follow  ,   will  belong to the

neighbourhood . Now choose  in  such that it follows both  and . That means

 is contained in  and hence  is contained in . Therefore  is in 

as well as in  which is absurd. 

(Reviewer's note: Please note that here are a few typos in the slide).

So, that completes today's, plan, model 31. Thank you. We will meet again, next time.


