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Hello, welcome to NPTEL NOC an introductory course on point set topology part II. So,

today we take up another topic in this chapter, namely filters. So, today in model 30 we will

just study basics of filters. 

Given a set , it is easy to see that the collection of all nets in  is too large, and indeed not

a set. On the other hand, Filters are going to be subfamililes of the power set  of , and

hence the collection of all filters on  is a set. 

We shall see that filters will do quote unquote, all the jobs that nets were invented for and

some more.  Through the concept of ultrafilters and ultra-closed filters. These concepts or

anything parallel to them is not available for nets. So, that is  one way of looking at nets

versus filters. So, filters seems to have an advantage over nets.  So, that is one of the, you

may say, justification for studying filters now, after having studied nets, quite thoroughly.
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Let  be any set. By a filter  on , ( I will using this notation ,  etc for filters, some

people may say filter in  also no problem), we mean a non-empty subfamily of the power

set  satisfying the following 3 conditions. 

(i)  Empty set is not a member of  . (Please note this one. It is very important.)

(ii)   is closed under finite intersections. (This one is familiar to you, like a property of a

topology.) 

(iii)  contained inside  contained inside  and  is in  implies  is in . (All supersets

of a member are also members.  Such a condition was not there for a topology at all. These

three conditions are similar to the conditions for a topology but only the (ii) one is actually

common, being closed under this is finite intersection. For a topology both empty set and the

whole  are members  whereas (i) says empty set should not be there. Of course, it follows

that  is always a member.

So, this is the important point of definition. Usually, the name filter comes from the property

(iii) which is a far generalization of the property (AU) for topology as well as certain feature

of a net.  Conditions (i) and (ii) seem to have been put there as an afterthought. This property

(iii) may occur in other studies such as algebra and geometry and the same word `filter' used

in a different sense.   
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Note that (i) and (ii) together implies that  has finite intersection property. I will be using

this  one again and again.  What does  it  mean,  by finite intersection  property? Given any

finitely many members of  , their intersection should be non-empty. First of all, (ii) says,

their intersection is a member of . Because it is closed under the finite intersection means

take finitely many members here, take the intersection, that also is a member. But then that

member is non-empty. So, together, (i) and (ii)  imply curly F has finite intersection property.

Since  every  filter  is  non-empty,  you see  I  started  with a  non-empty subfamily   in  the

definition of a filter. So, I take some member of , that is a subset  and hence by (iii),  

will be also there. So, I do not have to put that condition in the definition separately,  

Compare the conditions for a topology and for a filter. This is what I have done already. I will

repeat it. A topology on   always contains both empty set and the whole set  , whereas

property (i) says that empty set is not there in a filter. The second one is common to both of

them. Topology as well as filter. (iii) for filters is a much stronger than the third property for

a topology called (AU) namely, arbitrary union of members of tau inside tau. So, it looks like

as if we have replaced (AU) by (iii)  but (iii)  is much stronger. Even if one member is there

in  their union will be there in curl F. So, this (iii) is much more stronger than (AU) for a

topology.   
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We have seen that  always there, in all filters  on . This implies that the smallest and

simpler filter is the singleton . Of course,  itself should not be empty set. Then singleton

 is a filter. Because it has finite intersection property and there is nothing larger than .

On the other hand, the collection of all non-empty subsets of  is not a filter, unless  itself

is a singleton. You see, in the case of topology, the collection of subsets of  is allowed and

gives you the discrete space. Right? Here, we cannot allow all non empty subsets i.e., even

after throwing away the empty set,  that will not be a filter unless  is a singleton. 

Because as soon as   has two distinct points, you can take  , their intersection is

empty, so, that is not allowed. Finite intersection property will not be valid.  So, this is one

example. Let us see some more useful examples. (Refer Slide Time: 08:46)



Given any non-empty subset  of , look at the family, , this notation will use again and

again, which is the collection of all subsets  of , which contain , including  of course.

This  filter  is  called  an atomic  filter  with   as  its  atom.  One single  member  and  all  its

supersets. So, that is a filter obviously and that filter is called an atomic filter with  as its

atom. Now this is a notational remark here; If   is a singleton,  , I will not put a

bracket her and just write  for .  
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Now, suppose you have an infinite set . Then just like in the case of topology, there is this

co-finite filter. What is it? Do not take the empty set, but take all other members of  ,

such that their complement is finite, co-finite subsets. So, that will be automatically a filter

because first of all, if you take any two members intersection has to be nonempty because

both of them have a finite complement in an infinite set . Complement is finite and you are

working in an infinite set. That is important. The moment some member is chosen, any subset

bigger than that will also have its complement finite and hence (iii) is true. So, this is an

example, not very useful though but helps to make the concept of filters a little more clear. 

Next one is a useful one. Given a net   from   to  ,where   is a directing set, take any

element , take the section  viz., the set of all  (that is the definition of a section 

), now look at a subset  of  which contains . Put all such subsets  to get the family, .

It is very easy to verify that this is a filter. So, this filter is called the filter associated to the

net . So, I am bringing nets and filters together here, via the association  going to  has.

This filter is called filter associated to net . It is important because it plays the role of a one-

way bridge from nets to filters. 

Why I am calling it `one-way bridge? I do not know any nice way of going from filters to

nets. This one is very nice, very easy work. So, this one-way bridge is there. We shall have an

opportunity to elaborate on this point, the importance of this bridge.  
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Here is one more example in a topological space . Take the family of all neighbourhoods

 of a point  is fixed here.  is a filter. Clearly  itself is a neighbourhood of 



and so  is not empty. Intersection of finitely many members definitely contains the point 

and so is non empty. Supersets are obviously there. Clearly empty set is not a neighbourhood

of  and so is not there.

You may say that this is a simple example. It is a role model for the topological theory or

filters. Remember filters were defined without reference to any topology on . There was no

particular topology on , to begin with. What we did was we compared the concept of a filter

with the concept of topology, that, all. So, far there was no topology. This example is the first

example wherein we refer to a particular topology on  to obtain a filter. And this filter will

guide us as far as the topological theory of filters is concerned, as convergence etc.
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Now before taking up the study of interaction of filters with topologies, let us proceed our

study  of  filters  in  a  fashion,  similar  to  the  study  of  topologies,  but  independent  of  any

reference  to  particular  topologies  on  ,  except  noting  down  certain  similarities  and

dissimilarities between the two concepts of a filter and a topology, that is all. We will take

more examples also later on. 

So, first notice that if  is a family of filters on , then their intersection is a filter. You had

a similar theorem for topology as well. That is what I wanted to say. All ’s,  remember, are

subfamilies of . So, their intersection makes sense. What is the meaning of this? Take

all subsets  of  where  is inside of is  for every . So, that is the intersection of this

family. That is a filter, of course, empty set is not in any of them. So, it will not be here also.

So, you can easily verify that it is a filter. 



However, even the union of just two filters may have fail to be a filter because one filter may

have a member and another one may a member, the two of them begin disjoint. You do not

know that there is no hypothesis. This was there, for topologies also. But luckily if we have

two topologies, you can take the union and then generate a topology containing that union.

Even that may not be possible in the case of filters. So, we would like to do that kind of thing

here, namely generating filters, just the way we have done generating topologies. 
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A subfamily,   of a filter   is called a base for   if for each   inside  , there exists  

belonging to  such that  is contained inside . This is very similar to the definition of a

base for a topology. That for each point  , and a member of   containing that, there

must be some member   etc. Note that there is no reference to the point at all in this

case, for each , there must be a smaller , which is inside . 

In other words,  take a member of   and take all supersets.  They all  may be in  . That

suggests a construction here; it leads us toward something.

So, we have made a definition of a base. The entire of  is of course a base for itself, just like

any topology is a base for itself. So, this definition of a base satisfies similar to the conditions

for, what we have done but it is much more general. For example, the base for a topology

must satisfy the property that union of all  members of it  is the whole space  . No such

condition is here. 
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Let us  look at some examples.  Any local  base at  a  point   belonging to  ,  where   is

topological space is a base for the filter  . So, this was one of the important filters. You

need not work with all the neighbourhoods. You can take a base in the usual terminology of a

local base in the topology. That will be a base in the sense of filters also. 

A base for a given filter determines a unique filter (may be a different one)  in the following

way: The family of all sets, which contain some member of . You see, this filter is called the

filter generated by  which clearly contains .  

More generally,  it is clear that if we start with a non-empty family , which satisfies (i) and

(ii), then it generates a unique filter for which  is a base. Also, it is clear that different bases



may generate the same filter. Generating means what, all subsets and only those subsets of 

which contain some member of . The following result gives a complete picture.
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A non-empty family  contained inside  consisting of non empty subsets of  is a base

for some filter on  if and only if for every  belonging to , there exists  in , such

that  is contained inside . 

You see, this is again similar to a result for topological spaces, except that here there is no

pointwise condition. 

Proof is easy. You may use induction to prove closed under finite intersection. 

Now, we come to the next stage of `generating'. Only after that I should be using the word

generating here, to be precise. Similar to what we did in topology. What is this next stage?

the notion of a subbase. 

What is subbase? Let us define it. A subfamily  of  is called a subbase for a filter  on

 if and only if the family of all finite intersections of members of  forms a base for .  

You see, there is no condition of being closed under finite interactions. That was taken care

by this condition on the base.  In this case,  we say   generates  .  Or equivalently,   is

generated by . 

Student:  So,  this  condition like family for  intersections  from the base,  this automatically

implied that every,  empty set cannot be in . 



Professor Anant R. Shastri: Empty set  will not be there, but the family may be empty. Empty

set will not be a member of this one at all. Because if empty set is there, then it will be there

in the base also. But it cannot be in a  base either  because once it is in the base, it will be in

the filter also. So, that is not allowed. 

Student: This  also cannot be empty set?

Professor Anant R. Shastri:  can be empty. Why? Because what is the finite intersection of

members of ?  Members of an empty set?

Student: That will be complete . 

Professor Anant R. Shastri: Yes. The whole of  will be there.  is the only member now.

singleton  forms a base for what? the filter singleton . 

Student: If  is empty. So, we will get our smallest filter? 

Professor Anant R. Shastri: Smallest filter. The smallest filter has two subbases, empty set is

subbase, singleton  is also a subbase, but it is a base also. Singleton  is the whole filter as

well. However, the empty family is not a base for  . Because once it is a base, we are

taking only super sets of members in it. We are not going to take finite intersections there. 

Therefore, if we start with an empty family, and take supersets, we still get an empty family

only.  Therefore, for all practical purposes, you can assume that  is non-empty family, that is

all. 

So, a non empty subfamily family of  is a sub base for a filter, if and only if  has finite

intersection property. 
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Once again, you may be confused when  is the empty set. It has finite intersection property

because the only family which is finite subfamily is the empty family there.  So, you can

allow an empty family also just for the sake of completeness of the definition.  
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So, now we will do a little more with functions. This is again similar to what we did in

topology. Start with any function  from one set  to another set , and let  be a sub base

for a filter  on . Then I want to push it to  via . How do I push it? Take  equal to

the set of all  , where   is inside . So, this is a subfamily of  . Check that it has

finite intersection property.  So, this family is a subbase for a unique filter on  and that filter

will be called .   



So, how do I do that? What is the meaning of sub base for a filter? Take the family of finite

intersections of members of the subbase and  then take all the supersets.  So, that is your

. So, all that I have to see is that this family has finite intersection properly. You take

say, intersection of .  will be contained in it. So that is not

empty that is all.  
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Notice that instead of working with subbases if you directly take the family 

this may easily fail to be a filter on , in general,  may have bigger subsets, which do come

from  or . However, the above family has finite intersection property and hence will be a

subbase for a filter.  

Now look at the other round. Start with a subbase  for a filter  on . 

Unlike in the case of topologies, pulling back filters, going the other way round, pulling back

filters under an arbitrary function does not work well for filters. Remember if  is topological

space,   is some set and  from  to  is some function, then I can take inverse image of

open subsets in , they themselves form a topology on . That was a nice situation. 

Here, with the filters, it does not work. Not only that, if you take the family of inverse images

of members of S prime, that may not have FIP. So, of course, if we assume  is surjective,

then this works. So, you have to have more and more hypothesis. So, let us not bother about

pulling back filters.  Anyway, we are not going to use them in the convergence theory of

filters, which is our aim afterall.  

So, this is what I meant by saying that basic theory of filters, that is all. Next time we shall

study seriously, its relation with topology, namely convergence theory for filters. Thank you. 


