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Hello.  Welcome to NPTEL NOC, an introductory course on Point  Set  Topology, Part  2,

Module 3. So, today, we shall begin with some preliminaries required from one variable real

analysis. I can say that it is one variable calculus, but in calculus courses, we do not go this

deeper. So, I take this opportunity to do this one. I will explain why this is needed a little

later. 

Start with any function  defined on an open interval   to . For any point  , we will

define the upper Dini right hand derivative of . They are attributed to Dini. He was one of

the French mathematicians, I believe. So, let us just call them upper right-hand derivatives.

They are not right-hand derivatives. You are already familiar with the right-hand derivatives

and left-hand derivatives. 

Now,  we are  only  taking  upper  right-hand derivatives,  notation  is  ,  which  are

nothing but the limsup of these divided differences, , where the only thing

which makes it the right derivative is that   tends to  . So, only from positive part, all is

always taken positive here.   tends to  but from positive side. Note that you are not taking

the limit which may not exist but you are taking the limsup which always exists. 



The whole idea is that limsup always exists, no matter what the function is, if you allow

infinity also. If   is a bounded function, then the simsup will be finite. In any case, it will

always exist. So, I am just recalling the definition of limsup which is nothing but infimum of

the  following  sequence,---  for  all   here,  where  the  inside  thing  is  supremum  of

, over all the ’s between  and . 

Note that as  becomes larger, the range interval for   becomes smaller and smaller and so

does the supremum. So, this sequence, as a sequence in  , is a monotonically decreasing

sequence,  therefore  its  infimum  exists,  which  actually  the  limit  of  the  sequence.  So,

 always exists.  This  is  called upper Dini right hand derivative.  Similarly,  I  can

define the lowered Dini right hand derivative. 

The only thing I change is instead of limsup, I take liminf --- first you take infimum over

deltas ranging in these intervals to get a monotonically increasing sequence and then you take

supremum of that sequence. It can be shown that I mean, it is very clear from this that liminf

is always smaller than limsup and so on.

Both of them always exist but if they are equal then it will be actually the limit namely the

right hand derivative of  at . So, these things you must be knowing, but now, we have these

symbols here  and  for upper right hand derivative and lower right hand derivatives. 
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So, it is easily checked that if   is differentiable at   then   is equal to   equal to the

derivative.  For  any  two  functions   and   any  constant  ,  we  have   is

 and  . So, these are just linearity of   which follows

by the corresponding property for limsup. The same thing for  also. 

By the way, I have only talked about the right-hand derivative. It is exactly same way you

can  introduce  two  more  ’s  here  from  the  left  hand  also.  So,  there  will  be  four  such

quantities. If  is differentiable then all these four quantities are equal to the derivative itself.

Indeed this is if and only if. So, that is the easiest way to see that. 

But I am not interested, right now, in the left-hand derivatives here at all. So, neither I am

going to do a lot of things with these things. These things are very very helpful in analysis in

general. So, I take this opportunity just to introduce them. My main aim is to use them to

prove the so-called weak mean value theorem in the case of Banach spaces. So, let us go

ahead with that. 
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So, this is a theorem which will help us to do that job. This is very simple thing. It depends

only on   which always exists. So, all that I do is to start with some open interval say

containing the closed interval  , and a continuous real valued function   on it. Assume

. These are harmless assumptions. You can always assume   equals something

and then subtract that. That is not a problem. So, this is just a technical assumption. The basic

assumption here is that this is a continuous function. 

Suppose, now for some  positive,   for all  . Suppose we have found

out a bound, upper bound for  . So, pay attention, I am taking it only in the interval

. All that I want is this condition should hold in  , but I want the function to be

defined at  also. So, the conclusion is that  for all points in . 

So, just for a continuous function, if the Dini derivative   is bounded, it will give you a

bound for  the  function  a  very  specific  bound  in  terms  of  the  given  bound for  the  Dini

derivative. So, this bound for the Dini derivative must hold on the half open interval  .

But the conclusion is for the entire closed interval. 

So, how do I go ahead? If I show that  for every  positive, then it must be

true for  as well.

So,  I  consider  the  function   and  show  that  this  function

.  here is what? Here,  equal to , if  equal to  here is  which is .



So,  we  have  show  that   is  non-positive  for  all  .  The  same  thing  as  saying  that

, for every  So, how do I prove that  for all  

Now, the only hypothesis that I have is that  is continuous because  is continuous. This  is

just a difference of two continuous functions here. So,  is continuous. Continuous function

on a closed interval attains its minimum on each closed interval  for all .  

We claim this minimum value is at   itself. But then in particular we get  ,

because  is also one of the values in the interval. So, we want to prove 

but we are proving a very strong result namely, that the function itself takes minimum value

at . So, there is a lot more we are proving here (monotonically decreasing!) but we are not

using all that. We are just using that  is non-negative. 

So, how do you prove that the minimum value of this   is at  . So, that is where the Dini

derivative  will help us. (Refer Slide Time: 12:57)



By the way, every time you have to use limsup, you have to do this epsilon business. Given

an   subtract or add, whatever, then something happens. That is the only way to catch this

limsup and limpinfs, Not only that even while handling limits also, this is the way. So, 

, (remember  was difference of two functions), equal to  plus  of this function, viz,

. But second function is differentiable and what is the derivative? This is linear

map. So, the derivative is  . So, the   will be equal to this derivative, which is

. So, this   is nothing but  . We started with our assumption

that this is negative. 

 this is less than  itself is what we have assumed. So, apply this one to a point  inside

. This is true for all points inside this open interval . Fix an  and then take  inside

. Now I am going to use limsup correctly.  If all  these supremums were greater than

equal to , then the infimum of all of these supremums will be also greater than equal to .

So, for some  this supremum must be less than . 

Because,   is infimum over all these supremums, for some  , we have the supremum of

 must be negative for all . This is the same thing as saying,

that  for all positive . Therefore,  is not the minimum of  in

the entire of  Therefore, the minimum of  must be at . You understand.

The minimum may not be attained in an open interval but we have a continuous function on a

closed interval . Therefore the minimum is attained. But this minimum cannot be inside

. That is what we have seen. Therefore, the minimum must be at  and  must be the



minimum value  of   in  .  And  that  is  precisely  what  we wanted  to  say.  Therefore,

 in the entire of . 
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So, now we are ready to  do the generalization of Weak-Mean-value theorem. Why I am

calling generalization? Weak-mean-value theorem is true for all differentiable functions on a

convex domain in   into  , all vector valued functions. Now, we are going to do it on

Banach spaces. Same thing, same statement for Banach spaces. This is what we are going to

do. The usual proof for this in the case of   and   becomes easier because the Norm-

Square function is differentiable on . What is the Norm-Square function? 

Namely the Euclidean norm. Euclidean norm-square is just summation  . So, we can use

that to do our job. Because all other norms are equivalent to Euclidean norm. But in the

general case, we do not have any such theorem. And we do not know, in fact, it is not even

true perhaps that given a Banach space with a norm, that norm in our definition may not be

differentiable, even the square of the norm may not be differentiable. Putting extra condition

that norm being differentiable makes the result too much restrictive. Almost you are begging

that it must be a Hilbert space. So, that is why the Dini derivatives are brought in to help us to

prove the Weak-Mean-Value theorem. 



(Refer Slide Time: 19:17)

So, the proof itself is not at all difficult now. Let us go through this one. Start with  and ,

Banach spaces,  is a convex neighbourhood of  belonging to . By the way, I have already

told you that this assumption that  belongs to  is just a technical thing, you can do it for any

other point. 

Suppose  from  to  is a differentiable function and there exists a  positive such that all

the derivatives are bounded by : norm of  at all the points  is less than or . Then the

 itself is less than or equal to  for every . So, this is the weak-mean-

value inequality. 

In the case of one variable calculus,  this  was deduced  by using the mean-value theorem

wherein there is equality, namely,  is equal to  of something in the interval and

that   is bounded by   so, you get this one. But we do not have the mean-value theorem

itself, in the case of vector valued functions, but what we have is an inequality, directly. So,

this is what we are going to prove in the case of Banach spaces directly. Of course, it will

work for any  also because ’s are also Banach spaces anyway.
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So, fix one point  and define . See if you just take ,

this is precisely one variable calculus. Only trouble is that this would be a -valued function,

not a real valued function. How to get a real valued function? We are left with only taking

norm or  norm square.  Taking  norm square  does  not  make  it  easier.  Just  take  the  norm

function. This is a continuous function. You do not know whether it is differentiable.

Now, we have got into one variable calculus.  ranges over  Because  is convex, when

you take , it will be still inside you. Therefore,   from  to  is defined on an interval  

containing . Because, in the open subset  the line segment can be extended just a little

bit, on both sides.   



We claim that the Dini derivative satisfies the inequality:  . So, this was the

condition that  we needed.  So, this   is  the same thing as the   in the hypothesis of this

proposition. Once we prove this one, you can use our earlier theorem to see that this function

 itself is less than to  (the  factor is there after all), for all . But then you can

put , we get is . That will be less than or equal to . That is what we

wanted to prove. So, we have to prove this inequality, this formula (12). So, this comes very

easily now. 
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Take   and   positive such that both   and   are inside  . Because,   is the interval on

which the function is defined, so, you have choose   as small as necessary, so that   is

also inside  . So, once that is satisfied, I can look at   as well as   and take the

difference, divide by  and take the supremum and estimate the . 

So,  start  with  .  That  is  by  definition  difference  of  the  norms  of

 and . You know, by triangle inequality, add and subtract) this

will be less than or equal to the  . (If you take this term on the other

side, it becomes easy to see the triangle inequality). 

Now, once again you add and subtract, , so that the norm will be less than equal

to norm of this plus norm of this second factor which I have subtracted here. So, there this

delta comes out,  is positive. It is nothing but norm of  into norm of . So, norm of

this is less than or equal to that. I have pulled out this , because, now, I can divide out by this

. When you divide out by this delta on the left-hand side what you have is the corresponding

term for our   definition.   which is less than or equal to some of two

terms. 

Now you take the limit limsup of the LHS. That is the Dini dervative. On the RHS, the first

term is the norm of term occuring in the definition of the directional derivative of  in the

direction  . Since the derivative exists, the directional derivative also exists and hence the

limsup of this term becomes zero. The second term is independent of .



So, what you can conclude is that  is less than or equal to this second term which by

hypothesis, less than or equal to . So, what we have proved is this mean value inequality

for Banach spaces for all differentiable functions on a convex open set.
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So, let us now, convert this into the following theorem, a ready-to-use result for our implicit

function theorem etc.  

Let  and  be Banach spaces,  is a convex open subset of ,  is a differentiable function

on  taking values in ,  is a  positive constant and  is a some bounded linear function, 

in , (see, so far everything is same as the previous proposition, but here now, I am

bringing an arbitrary bounded linear function  from  to  ) such that  



for all . (If you put  equal to  then you get the earlier case. So, this is an extension of

the earlier case.)

Then  the  conclusion  is  (also  slightly  more  general  namely,)  that  the

 for all  inside this convex neighbourhood.

This  itself is a subset of the Banach space . So, this is very easy now. Of course, using the

previous result. We do not need to go back to any more Dini derivatives.  
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So, first consider the case when  itself is . This is my assumption. This may not be the case

but I am taking a special case. Now,  is a convex neighbourhood of  because  is after all

an element of . So, we have to prove that  for every ,

by replacing  with .  

For  this,  what  I  do  is  to  put  .  Because  in  the  hypothesis  here   is

bounded. So, I take . What is the derivative of ? It is . Therefore, we

can apply the previous proposition. Now one more step. I have to remove the simplification

we have made, namely, I have assumed  is . So, how to do this in the general case? 

You first take the domain itself to be ; translate  by . (That is shift the origin to ).

That means we now consider the open convex set consisting of all points  where  is



inside  .  On  this  one,  you  change  the  function  also  now,  namely,  instead  of  ,

.  is a point of . Therefore  is a point of .  is convex therefore

 is convex. So, you can apply the previous conclusion for . What you get is precisely

the required statement now.
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So, next time we shall prove the implicit function theorem just for the sake of what we are up

to, I will just begin just statement and then we will prove this one next time. So, implicit

function theorem, the statement itself is somewhat long here. The proof is not as long as that

but, you know, you do not have to be threatened by the big statement. 



What are the hypothesis here?  and  are Banach spaces.   is any topological space. So,

that is part of the generality that we have achieved here. Take  to be any open subset

of . In other words,  is an open subset of  and  is an open subset of ;  from

 to  is a continuous function such that :

(i) for some point  belonging to , we have  is ;

(ii) for each  , the function   from   to   given by  , namely,   is

fixed now to get a function of just the variable ,  is from  to . That is differentiable. Its

derivative will be a bounded linear map  from  to  and the function  from 

to  given by  is continuous. 

So, for each fixed ,  it is continuous. That is not enough.  as function of two different

variables  and  must be jointly continuous. Finally,

(iii) the derivative at ,  is a similarity from  to . This hypothesis is

very important.

In  particular,  you  know  that   and   are  similar.  Other  hypothesis  is   is   times

differentiable with respect to   and this partial derivatives of   are jointly continuous. The

hypothesis  is only a technical one.
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With these hypothesis, now, the conclusions. There are two conclusions here. For the second

conclusion we will need little more hypothesis that is why it is separated out in the statement.

(a)  The  first  conclusion  is  that  there  is  a  neighbourhood  of   in  ,  more

specifically,  a  smaller  neighbourhood   of  ,  some  smaller  and  a  positive  real

number  (that would give a neighbourhood of ) such that for all  there exists a

 belonging to  ,  the closed ball  of radius  rho around  , with the property that

. So, you see . This of  as an equation which we want

to solve. One solution has been given. Then you want a continuous solution here on a small

neighbourhood. So, that is precisely what is achieved here. In fact, when you are trying to get

a solution in a neighbourhood, you are already ensured of a unique solution. In the solution of

all existence theorems, the uniqueness part helps you a lot.  

So somehow, we have got this uniqueness here also. You see the only thing to catch is that in

the conclusion, we have to cut  down the domain properly on which we have no control.

Some open subset we do not know, some row we do not know. On the closed ball for each

point inside ,  will be unique. One is not satisfied with just continuity of . We would

like to have differentiability also. For that we have to put a little more hypothesis. 

Since  is a subset of a topological space , it does not make sense to demand that  must

be differentiable. So, in order to make that sense we have to say that  is an open subset of a

some normed linear space. So, more safely, we assume that  is a Banach space in the next

part 



(b) So, further assume that   is also a Banach space and the function   from   to  

defined by  is differentiable at . 

You see I have used now upper index here to indicate that now, I am fixing the right-hand

slot;  is fixed and  is the variable. But the function is same a function  is restricted to

 and  is varying that must be differentiable. We are not demanding that the function 

itself from   to   is differentiable from the product space. This is a much stronger

condition. But we are assuming that it is continuous. Whereas differentiability is partial with

respect the two variables   and  separately. Fix , you get a differentiable function, fix 

you get another differential function. That is all we are demanding. So, this part is that 

where  is fixed that must be differentiable. Denote its derivative by  

Then what happens?  will become differentiable at . What is this ? The unique solution

given by the part (a). That will be differentiable at  and its derivative is given by .

See   is  bounded  linear  map,   is  a  bounded linear  map.  This   is  invertible,  it  is  a

similarity.  So,  I  can  talk  about  .  So,

So, let us prove this statement next time. Thank you.


