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Hello,  welcome to NPTEL NOC an introductory course on point  set topology part  2.  So

today we will continue our study of nets: module 29.

Cofinal families subnets etcetera. 

So, let us begin with a definition.

A subset  of a directed set  is set to be cofinal if for each  inside  you must have some

 inside   such that this   follows  . If you have a net   from  to   that will be called

frequently inside a subset  of , if  is cofinal subset of . 

This is the same as saying that for each  there is b in  such that  follows  and 

is in .  is cofinal the same thing as now  is frequently inside . 

Which is somewhat weaker than eventually inside . Eventually constant function is much

more stronger than having a just a subsequence, which is a constant. So, this is somewhat like



this. Do we also have a concept similar to a subsequence. Yes,  there is a such a notion:

subnet. But wait for a while.  

(Refer Slide Time: 2:44)

Anyway, it is easily seen that eventual subset is cofinal, but converse is not true. That I have

indicated. You can have examples of sequences themselves where this is not true. 

So, another remark is  that  cofinal  subset  of this   (remember,   is  directed set),  in a

topological space   is nothing but a local base. Remember the definition of a local base?

given any open neighborhood of , there is a member of this family which is contained in the

given neighbourhood. So, that will definition of local base. So, every local base is nothing but

a cofinal subset of this . Therefore, they will do the job of this  quite often. 
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The following lemma is obvious. So, that is precisely what I mean that the cofinal families

take care of the convergence properties of the original thing. 

Every cofinal  subset   of  a  directed  set  is  again  a  directed  set  with  the same direction

restricted to the subset. Moreover, if   from   to   converges to  , then so does  

restricted to . 

So, that is why they do the job is what I said, but they may not do everything that the original

thing can do. 

Of course, if you take all of them together, then they will do the job. That is the whole idea. 

Note that a subsequence of a sequence is a cofinal family of  treated as a net. A subsequence

can be thought of as a net where sequence itself is thought of as a net. So, both of them you

can treat as nets then a subsequence will  be a cofinal  family.  Cofinal  word is used even

within sequences also anyway. 
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One more definition. Now we are coming closer and closer to the convergence property. Take

any net  in a topological space. A point is called a cluster point of , (earlier we defined a

limit of a net) if and only if   is frequently in every neighborhood of   which is the same

thing as saying that  is a cofinal subset of , for every , where  is a neighborhood

of . It is just same thing as saying that given  there must be  such that  is less

than or equal to   implies   is inside  . So, this is the notion of cluster point just like

subsequence converging. So, if a cofinal net is converging to a point, we will call that point a

cluster point. 
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Now, here is the lemma which relates the property of the cluster points: Take any net  .

Suppose there exist a cofinal subset  of  such that  restricted to  as a net converges to .

Then  is a cluster point. 

Proof: As  converges to  implies that given a neighborhood  of , there exists a belongs

to , such that for all   which follow  is inside . So, this is the meaning of  

restrict to  converges to . 
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Now to show that  is a cluster point of , given any  inside , first choose  such that

 less than or equal to  and  is less than or equal to . You have two points , and  in , so

you can take  to be bigger than both of them, i.e., which follows both of them. That shows

that  is frequently inside . Hence we are done. See, since  is less than or equal to ,  is

inside .

So, what is the conclusion here? The cluster point of a net is a generalization of a cluster

point of a sequence in analysis. There, we have a strong theorem namely a point is a cluster

point of a sequence if and only if there exists a subsequence which converges to it. This leads

us to think about a notion of a subnet of a net. Like a sub sequence, first of all, let us recall

the correct definition of a subsequence, sometimes some books do not give you this. 

So, I am going to give you that one,  from  to , is a subsequence of a sequence  from 

to , namely, we must have an order-preserving function  from  to , such that this  is s

composite . It is like re-parameterization of the domain, So, order preserving map one way,

then this  is a subsequence of . 

Experience tells us that a simple-minded generalization like this replacing  by any directed

subsets would not be enough. See all sequences have their domain the set of natural numbers

. But when you take all nets, the domains keep changing here. So, if you just say there is an

order preserving map from one to the other, that may not be enough. So you have to be

cautious here. So, we need sufficient experience, in order to come out with this definition.

There is scope for improving it or making it more complicated or whatever. I would like to

say all these things are not hard and fast rules. So, you are free to think of doing something

different also. So, here is final definition as far as the existing theory is concerned. 
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Start with a directed set and a net inside . By a subnet  of , we mean another net from

another,  directed set   such that there exist a set theoretic function   from  to  ,

such that 

(s1) our  is nothing but  (this is the first thing). 

Now, in the definition of a subsequence subsequence we have order-preserving relation. Here

it is replaced by a weaker condition 

(s2) says the following: for every , you must have an , such that for all  which

follows , (  less than or equal to ),  must be followed by . 

So,  should come after . So, that is a condition on . 

So, (s2)  is reflecting cofinality here. Of course, we have to bring  here, if  is the inclusion

map, (s2) will be just like a corfinal condition. If  is a sub-direction of of , then it would

have been the same thing. But we want to cover more general set-up. So, the two nets are

related by a function  which has this property. 

So, this becomes a far superior definition indeed. Let us see whether it works or not. 

If you make too weak a definition then it may not be good enough. That is right.
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The first  condition says  as  in  the case  of  a  subsequence.  But  we have  given up  on the

condition  of  order-preserving  requirement  of  .  Instead  of  that  the  second  condition  is

something like if   goes to infinity,   also goes to infinity. You see 's is large should

imply  lshould be large. That is like  definition of function going to infinity if you

should do correctly. So, it is similar to that. 

So, analysis is the guide for all new definitions. After all these are derived from experience in

analysis that is all. Notice that every subsequence of sequence , is a subnet when you treat s

as  a  net.  Also,  we  can  easily  get  examples  of  subnets  of  a  sequence  which  are  not

subsequences. Very easy to get just obliterate 1, 1 element. So, that is not order preserving. It



has no effect on the rest of them, it will be a subnet, but it will not be a subsequence. Thus,

this definition of subnet is a liberal generalization of a sub sequence. 
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So, one more remark here. One is tempted to compare the two concepts a cofinal family and a

subnet. Indeed, if  is a cofinal family in , (whatever partial order direction) then with the

restricted order it  is  a directed set.  Also,  given any net   from   to   taking,   as the

inclusion map, it follows that  restricted to , is , is a subnet. So, that is what I have

told you that cofinal families do give you subnets. Thus, we see that the concept of a subnet

generalizes the concept of restricting a net to a cofinal family as well. 

So, we can now strengthen the earlier lemma 7.21, that we had proved, namely, bring in `if

and only if' etc. 

Take any net  in a topological space . Then a point  is a cluster point of this net  if

and only if there exists a subnet  of  converging to . 

We had seen  a weaker  version  of  `if'  part,  i.e.,  there  is  a  cofinal  family   such  that  

restricted to  converges to . Now, in terms of subnets you will get `if and only if'.

Let us look at the `if' part.  If you have subnet converging to , then we have to show that 

must be a cluster point of . So, let , from  to  etc. That  be a subnet of  and

let us assume that  converges to . Take a neighborhood  of . Then there exists some 

inside   such that   is less than or equal to   implies   is inside  . This is from the

convergence of . 



So,   is less than or equal to   and   which is  , that will be inside  ,

because  as  soon  as  something  is  bigger  than   of  that  is  inside  .  Therefore,   is

frequently inside . Hence  is a cluster point of . So, one way is done. 
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Now, the `only if' part. You have to work little harder.

Suppose  is a cluster point of , I have to construct a subnet which converges to . Such a

thing is not possible in an arbitrary topological space with sequences. There might not be

enough sequences at all.  So, this is  something in which the nets have an advantage over

sequences. So, let us see how it is done. 

We take ordered pairs   belonging to  ,  with  the  property  that   of  the first

coordinate,  viz.,   belongs  to  .  What  are  's?   ranges  over  neighborhoods  of  ,

Obviously, every ,  every element of  is non-empty. 

So, that is my definition of the set  . Now, what is the relation in ? Again take the strict

relation coming from .  has a relation,  has a relation take the strict relation on

the product, viz.,  is less than or equal to  if and only if  is less than equal to 

with respect  to  the  order  in   and  with  respect  to  the  direction  in   viz.,  the  reverse

inclusion,  contains . 

We need to check that this is a direction on . This is not true in general. We have to use

somehow the property of  , namely,   is a cluster point of  . Only because of that this is

working. 



In any case transitivity and reflexivity are obvious there is no problem, they not depend upon

any special property of ; they are true inside  and so, they will be true hear also. 

The problem is  about the  third  property namely direction.  Suppose   and  

belong  to  .  We  must  find  a   which  is  bigger  than  both  (or  follows  both  the

elements). 

So, first of all find , such that both  and  are less than or equal to . So, this is

possible because  is a directed set. Now, since  is a cluster point of , you will get a 

inside , such that  less than or equal to  would imply  is inside . We have

 as a neighborhood of   for which I must have a   as above. That just means that

 is an element of  because,  itself is inside . It will be bigger than

both  and . Why? because  for example is less than ,  is less than equal

to  and  is less than equal to . This proves that this relation is a direction on . 
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So, we have constructed a directed set. We have yet to construct a net that will be a subnet of

. For that I take  from  to  to be the first projection;  is after all a subset

of the product of two sets, take the first coordinate projection. Let us verify that  satisfies

(sii), only then this  followed by  will be a subnet of . 

Given a d inside , first I have to choose a neighbourhood of , so, choose the whole of ,

then  this will be inside  already. So,  is a member of . Now  is less than or

equal to   just means that   is less than or equal to  , which is the same as saying

 is less than or equal to . Because  must be less than or equal to  is built in

here. So, that verifies (sii).



So, once you have that, I can take  is equal to . So, we have constructed a subnet of .

All that is fine, but we have to verify that this  converges to . Starting with a cluster point

of  , we have got a subnet I will now show that, this converges to  . That is not difficult.

Once again use the hypothesis that   is a cluster point of  . Given  inside ,  there is a

, such that,  is less than or equal to  implies  is inside . 

Now,   is inside , because   itself is inside . This is a member of   which will

satisfy the convergence condition for . For, suppose  is less than or equal to  in

E. This implies  less than or equal to  and hence by the choice of  we have  is inside

. But then . Therefore,  converges to . 
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It is easy to see that, in an indiscrete space, we have this property, namely, every sequence in

it is convergent to every point. And you can characterize indiscrete space by this property.

Namely, if every sequence converges to every point, then it must be an indiscrete space. So,

this is an easy thing, which you must have seen in part I. 

It is also easy to see that in a discrete space, on the contrary, (see, I am taking these 2 extreme

examples  and  what  sequences  can  do  to  in  them),  if  you  take  a  discrete  space,  every

convergent sequence is eventually a constant. However, the converse is false as seen in the

earlier example, we have seen that one, namely, the uncountable set with the cocountable



topology. Every convergent sequence in  is eventually a constant yet,  is not

discrete space.
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So, what is the role of a net here? The net, on the other hand has this property. A space  is

discrete, if and only if, every net which converges to a point  must assume the value , that

is all. We do not say `eventually a constant '; just that  assumes the value x.  If this happens

for every net, that space must be discrete. 



So, this is a powerful characterization of discrete spaces in terms of convergence of nets. A

space  is discrete if and only if every net which converges to a point must have the value ,

that is all. 
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So, let us prove this one. Suppose  is discrete and  is a net converging to some point  .

Then, there must exist  belonging to , such that  is less than or equal to  implies  is

inside  this  neighborhood  ,  because  every  singleton  is  open.  So,  I  am  choosing  this

neighborhood and for that I must get a some  with with this property. In particular, putting 

equal to  here,  must be equal to ; there is no other element here. 

So, the value is assumed over.

Now comes the converse. Suppose   is  not a discrete space.  Then we will  produce a net

which converges to some point in  and yet it does not assume that value at all. By the way,

there are many sequences themselves, which are convergent and which do not assume the

limit value. The sequence , for example. So, it is not a surprise. You should realize that.

But this ordinary property characterizes the discrete spaces is something new out of nets not

out of sequences. So, you pay attention to that.



So, let us prove the converse here. Suppose  is not a discrete. Then there exists a point  

such that singleton  is not open in , because if every singleton is open then  will be a

discrete space. 

In  other  words,  every  neighborhood of   contains at  least  one other  point.  We can now

construct a net  from this neighborhood system  to , which has the property that 

is inside ;  is non-empty, just by our choice of  inside a non-discrete space 

(So, this function again exists because of axiom of choice.) 

This  converges to . That is easy to see. However,  never assumes the value , because it

is always inside , for all , all the time. 
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So, one can go on doing quite a bit of net theory, but I would like to stop here and then take

up the study of filters and then as declared earlier, we will study a little bit of nets also in

between, namely, whenever the properties of filters comes close to the properties of nets also.

In particular, there will be many more results on filter than just what you have seen for nets.

Thank you.


