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Hello welcome to NPTEL NOC an introductory course on point set topology Part 2, module

28. This chapter consists of Nets and Filters. So, module 28 will be on Nets.

Let me tell you a little bit background here. Recall that by a sequence in a set , we mean

any functions with the domain the set of natural numbers and the codomain . So, why the

study of sequences is not exactly a part of the study of set theoretic functions? Why it is so

different?

A sequence is just a function the only specialty is that the natural numbers have a natural

order and that too is actually a total order. More than that it is a well-order. The set of natural

numbers is well order set. That is the explanation that a sequence is more special than just an

ordinary function. Its domain being a well ordered set, allows you to make so many other

mathematical  statements  about  a  sequence,  beginning with the principle of  mathematical

induction. 

So, there are many uses of sequences, but the one which is most relevant to us is the concept

of concept of convergence. The first thing that we notice here is the total order of the natural



numbers, we do not worry about the well-orderness so much. The second thing is countability

of the natural numbers. That also seems to play a major role. 
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However, the well ordering of natural numbers, as I have told you, is not at all important for

the  convergence  theory  of  sequences.  Indeed,  convergence  property  of  a  sequence  is

independent of the first few values of the sequence, to be very precise. That is why I think

that the well-ordering is not all that important for discussion convergence. 
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Based on these observation, we make the following definition wherein we want to enlarge the

scope of this convergence theory.  So, the enlargement or the generalization comes in the



domain of the sequences. Naturally, when the domain is changed, you want to change the

name also. 

By direction on a set  , we mean a partial order, just to distinguish it  from the standard

partial order on the real numbers and natural numbers, we are going to use this latex notation.

You can read it just as `  followed by ', rather that saying `  is less than or equal to ' which

could be somewhat misleading terminology. We are not comparing any quantitative thing

here. But partial order is a partial order anyway and we shall use the terminolgy `  less than

or  equal  to  '  as  well.  So,  this  is  a  partial  order  with  the  following  properties:  (When

somebody says partial order people already mean something, it does not matter. Actually, I

will take a binary operation on   which just means it  is a subset of   satisfying the

following properties:)

(a)  is always followed by .  That is reflexivity. (Once you use the word `partial order' you I

do not have to say reflexivity separately, that is included in the definition of partial order but I

just wanted to be very clear about what we define here.) 

(b) The second property is that  less than equal to  less than or equal to  implies  is less

than or equal to . That is transitivity.

Then there is a third one which makes a partial order into a `direction'. So, pay attention to it.

 (c) Given any two elements  in , there is a third one  in  which sits over both  and ,

or you may say, which follows both of them or you may say which is greater than both of

them. 

 If a binary relation on  satisfies the above three conditions then I will call it a direction. 

A set together with a direction is called a directed set and is denoted by usually by .

Quite often, as usual, we will not mention the direction separately and say that  is a directed

set, especially, when the direction is understood. 

Given any set  , (now, I am going to come to the sequence part now, replacing it by the

word `net',) by a net in , we mean a function from a directed set  to . That is all. 



Once again, a word of caution about my terminology here. 

You see in general, a partial order to be anti symmetric also. In our case, if we assume anti

symmetry, no harm is done, but the general  definition of directed set does not make this

assumption namely, there is no anti-symmetry assumption. It may happen that  may be less

than or equal to   and   is also less than or equal to  , yet a may not be equal to  ; that is

allowed.  
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 Such a generalization is not of much importance for us. So, if you do not want to bother

about such details,  you can assume anti-symmetry also, in the definition of a direction, no

problem because all our examples are anti-symmetry. The general definition is necessary in

what are called directed systems in the category theory. 

 Now, let us have some examples. 

The set of natural numbers which was a motivating example is a directed set with the usual

order. It has many more other properties those things we have sidelined for a moment now.

So, a sequence is a net. 

But now, there will be many more nets than sequences. So, we shall study them. First let us

just  concentrate  on directed  sets.  Another  important  example  of  a  directed  set  for  us  in

topology is: any local base   at a point  , where   is a topological space, with the

usual inclusion of sets as the relation, only the thing is that I take it in the reverse order, so, I

keep calling it reversed inclusion:  is less than or equal to  now implies for us and implied

by  is a subset of . 

So,  people  do  use  the  notation  instead  of  this   they  will  use  the  reversed  .  There  is

absolutely no loss of generality at all. On the other hand, in general for subsets of a given set,

following the common usage, it would have been appropriate to say  greater than equal to 

if and only if  contains . That is alright if you are studying only the partial ordering. Here

we want to concentrate on directions.  

I should say that by spending this much of time on our convention,  I hope I have removed

any confusion here. 

In  particular,  the set  of  all  neighbourhoods  of point   in  a  topological  space  ,  will  be

denoted by , and it will form a directed set under the reversed inclusion. We shall be using

these directed sets in the sequel. These are important for us.
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Some more examples: Another important example of a directed set in a topological space is

the following: Start with any family   of closed subsets of  , with the finite intersection

property. What is this finite intersection property? Intersection of any finitely many members

of   must  be non-empty. In  particular,  all  members  of   must  be non-empty. Under the

reversed inclusion this may not be a directed set.  

So, we have an opportunity to study this kind of families. So, we will not leave it like this,

but we will make it into a directed set by considering a larger family  of all subsets of ,

which are intersections of finitely many members of . Put all of them inside . So, you have

enlarged the family  to this family , for all members of  are in  as well because I can

take just each one of them as being intersection with itself. All those are there, two of them

are  you  take  intersection  may  not  be  there  put  that  one  also  like  that  finitely  many

intersections  should be put  inside  .  Then   becomes  a directed  set  under  the reversed

inclusion. When you have two elements  and  in , which may not be comparable, you

take   that will be a member of   and smaller than both of   and  . 1 So, the

condition(c) for direction is satisfied. 
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Yet another example is the family of all open coverings of a given topological space  with

the relation,  I  am going to  define this refinement  relation now, what are the meaning of

refinement relation? Suppose  and  are open coverings of . Say  is less than or equal to

( )  if  is a refinement of , viz., each member of  is contained in a member of ; i.e.,

there is a refinement function  from the indexing set  of  to the indexing set  of  such

that  is contained inside . So, this is the refinement relation. Once you have 2 families

like this, you can take  where  runs over  and  runs over , this will be a common

refinement. So, that is why this is directed set. So, notice that here neither   is contained

inside  nor  is contained inside , members of  are contained inside some members each

member is going to some member. So, that is the relation here. 
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Another interesting example of a directed set which is more or less the mother of all these

theories comes in Riemann integration theory. How? You start with a bounded function on a

closed interval and then you start cutting down the interval into partitions. Then you are not

satisfied with that you take any two partitions you want a refinement of both of them and that

is precisely leads to the notion of directed system, family of all partitions with the relation of

refinement of partitions. 

You know what is a refinement of partition. You put some extra points in between to get

another partition,  that is a refinement. So, if we have two arbitrary partitions, you can always

get a common refinement by interlacing the points of both the partitions.
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And what I want to just tell you I cannot go on doing Riemann theory here is the Riemann

integration theory can be formulated beneficially if you use the terminology of directed sets,

and directed systems.

So, like this you can mention other examples also from analysis.  I will tell you what, directed

systems are used very much in advanced topology as well as in complex analysis. In complex

analysis,  you are dividing rectangles or domains inside the complex plane  into rectangles,

smaller and smaller rectangles and so on. So, there is this  famous method  known as Runge’s

trick, you can use this to prove many things in complex analysis.  
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So, let us proceed with certain notions of sequences, which we use in the convergence theory

and try to modify them or adopt them for the case of nets. So, here I am going to introduce

subnets eventual subnets and so on. 

Start with any directed set  , take a subset  of  and then you want to tell what kind of

subset you are taking. 

 It will be called an eventual subset if there is   inside  such that  is less than equal to 

would imply  is inside . There is one point in , everything following that point, all those

points must be inside . So, such a thing is called an eventual subset. 

We can apply this idea to nets also, borrowing it from sequences, what determine the limit

property of the sequences, after all. This what I told you, first few values of a sequence do not

matter as far as the limiting behavior of the sequence is concerned. While dealing with a net

we cannot talk about first few and so on here. 

So, you begin with some  and you are not worried about what happens before . Everything

after a must be inside  such thing is called eventual subset. 

Given a net  in  and a subset  of ,  is a net means what?  is a function from  to 

now, we say  is eventually in , if , set of all points of  which come inside  under

, this must be an eventual subset of the domain  of the function . 
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Next we consider a net   taking values in a topological space. See eventuality of net has

nothing to do with the topology on ; it is a part of the definition of net. Now, we are coming

to the convergence theory here and so  must be a topological space.

We say   converges to a point   inside  , if   is eventually in every neighborhood of  .

(That is the meaning of convergence.)   In that case, we say  is a limit point of . 

So, I will explain this definition. It just means that given a neighborhood  of  in , 

must be an eventual subset of , which is the same thing saying that given any neighborhood

 of , there exist  inside  such that  follows  implies  is inside . 
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Now, we immediately come to a theorem here which is a one point higher score than the

sequences. For a sequence, you do not have such a theorem. So, what is it?

Start with any topological space . It is Housdorff if and only if every net  in  has at most

one limit.

We know that in Hausdorff space every sequence has this property, but if every sequence has

this property, we also know that we cannot say that the space is Hausdorff. However, we are

saying that if this happens for every net inside  then  must be Hausdorff. The proof of

`only if' part is similar to the case of sequences. So, I will leave it to you to figure it out as an

exercise. 

Now, I have come to the `if' part.  So, assume that  is not Hausdorff. Then I will prove that

this property does not hold, i.e., we have to produce some net  in  which converges to at

least two points.  
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So,  suppose   is  not  Hausdorff  then there  are  two point   in   such  that  every

neighborhood   of  ,  intersects  every  neighborhood   of  .  This  is  the  negation  of

Hausdorffness. Now you look at the product set ,  denoting the family of

all neighborhoods of  , which are directed sets. But what is the direction on the product? I

will define it presently. There are many ways of defining it. 

So, define this direction on  as follows:  is less than or equal to  if and only

if, (this is a strict order)  is less than equal to  and  is less than or equal to , which is

the same as  contains , and  contains . Both them should hold. Verify that this is a

direction on . It easy you can do that. 

Now, define   from   to   by the rule:   is an element of the intersection of  

with . This intersection is non-empty is our assumption, viz., every neighbourhood of  

intersects every neoghbourhood of . So, I can pick up a point in the intersection and call it

. We are using axiom of choice here. We are using axiom of choice all the time,

anyway. 

So then,  is a net. Once  is a directed set the function   is a net. This net I want to claim

converges to both  and . It is very easy to see. Take any neighborhood  of ,  or .

You can select   belonging to  . That satisfies the property that if   follows

 that means   is contained inside  , then by the construction   we have



 is an element of , which will be both inside ,  or . Since this is true

for arbitrary , this just means that  converges to both  as well as . In one go, we have

approved both of them. 
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In any case, I want to recall this example which you must have seen in part I already. Take an

uncountable  set  ,  like the real  number itself  with the cocountable  topology.  Remember

cocountable topology means what? a set is open if and only if its complement is countable or

it is the entire . Of course, the empty set is always allowed. 

Now, take a sequence in  , that is actually a net   from  to  , which is convergent to a

point  inside this space. Put .  is a countable set that is all, throw away 

from it that is also countable set, hence   is a countable set. Therefore,   is open, but

little  belongs to this , because  does not contain . 

So,   is  a  neighborhood  of  .  Now   converges  to  ,  we  start  with  a  sequence

converging to , that is what I said, (this is a short notation for convergence:  converges to

), there exists  such that  implies,  belongs to , which is a neighborhood

of , but  is contained in the singleton , because everything else has been

thrown away here, , only  may survive. That means  for all .



What is it? What is this means? This means that the sequence is eventually a constant. Thus,

we  have  proved  that  every  convergent  sequence  in   with  co-countable  topology  is

eventually a constant. In particular, a sequence in  can have at most one limit.  

So,  the  property  as  in  the  above  theorem  is  satisfied.  However,  we  also  know that  the

cocountable topology on an uncountable set is not Hausdorff. Any two non-empty open sets

will intersect. So, this is one little small surprise for you or justification for doing something

like a net, a general concept than sequences. So, we will have many such things. 
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So, next one, yet another aspect in which nets fare better than sequences is the following

result. 

Recall that we have defined a space to be sequential if its topology can be determined by

convergent sequences in it. So, sequences have this property while studying metric spaces

and so on. In the case of nets if  you try to have such a result,  then you will  get  all  the

topological spaces. Just washes out the whole thing. So, that is what I want to say that means

what? the nets will determine the topology completely.
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 How so? That is what here, in this theorem: 

Let  be any topological space and  be a subset of . (You may prefer to take  to be non-

empty subset,  but  that  is  not  necessary,  because  if   is  an empty set  then the following

statement is vacuously true.) statement). Then  is open if and only if every net  in  which

converges to a point in  is eventually inside . 

So, that is a characterization of an open subset (other than non empty set other than empty

set). Characterizing all open sets means its topology is defined completely, determined by the

convergence behavior of the nets. 
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So, this is a theorem which is not at all difficult to prove. By the definition of convergence of

a net, the `only if' part is clear. We need to prove the `if' part. Suppose  is not an open set.

This means that there exists a point  inside  such that  does not contain any neighborhood

of . 

Now, look at any local base . (You can take the whole of , if you like, but just any local

base at  is enough. Sometimes you can verify this property only for a local base and that is

why I am using local base at , which we have studied earlier, local bases are directed sets.

For  each   inside  ,  choose   to  be  a  point  inside  ,  possible  because  this

neighborhood  is not contained in . (Once again this definition of  uses axiom of choice.)

It  follows,  just  as  before  that   converges  to  ,  but  it  is  never  inside  ,  forget  about

eventualities.
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So, we have seen that convergence of nets determines the topology. So, it is so powerful. We

will see more of its power. A few more properties of this convergence theory, we will study.

Once again  there  are  topological  spaces  with  subsets   such that  every  sequence  which

converges to a point in ,  is eventually in . Yet  is not open. I will not give you a specific

example here, but it is already there whatever you have seen today. So, just find it out.
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Here is an exercise: let  be an eventual subset of a directed set . Show that  with  the

same partial ordering, same direction restricted to the subset  is a direction on . So this is

something non tirvial but not difficult.

Further take any net s   to a topological space  . Suppose   converges to   belong to  .

Then the subnet  restricted to  also converges to  and conversely. It is `if an only if'.  

This is  also not  difficult to figure it  out. Once you do that  you will be familiar with the

definition of convergence, definition of eventual set and so on. So, let us stop here. Next time

we will study a little more properties of nets. Thank you.


