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Hello, welcome to NPTEL NOC an introductory course on point set topology, part 2, module

27.  Today,  we  shall  study  Nagata-Smirnov  Metrization  Theorem  as  mentioned  earlier.

Urysohn’s metrization theorem does not give a complete answer to metrizability  problem. It

was solved by efforts of several people. There are various versions of metrizability theorem.

We shall now concentrate on one such result which seems to be most satisfactory, namely,

Nagata-Smirnov Metrization Theorem. We shall present the proof due to Nagata. A proof

due to Smirnov  can be found in  Willard’s book. 

Before we begin with the theorem,  we need to introduce another version of normality. 

So, the Nagata's  proof of metrization theorem is in spirit  similar to Urysohn’s,  but  since

second countability is removed now, the embedding will be in a much larger product space

and also, we need a little more strengthening than normality. So, that is what we want to

introduce now. 
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A topological space  is set to be perfectly normal if for every pair  of disjoint close

sets inside , there exists a map  from  to  such that  is the precise inverse image

of  and  is the precise inverse image of . So, I have said  are disjoint closed subsets.

If one of them is empty, say,  is empty then the assertion is that h does not take the value .

Similarly, if  were empty, then it means that  does not hit . 

But  generally,  while  talking  about  normality,  we  take  non  empty  disjoint  closed  sets.

Getting precise inverse images is stronger condition than normality. So, even in a normal

space, you will have  going to  and  going to  that much is possible. But there may be

more points that go to  and more points to . So that, that is where the perfect normality

comes into business.  is the précise set of points wherein  takes value  similarly,  is the

precise set of points where in h takes value .

A normal space is perfectly normal if only if each closed subset is . So, this is where the

link between perfectly  normal and normal is  lies.   is  the key. Remember that  under a

continuous function into a metric space, inverse image of any single point is a . 

Clearly perfectly normal is normal, there is no problem. So, every closed subset in  is  is

what you have to show under perfect normality. Given any closed subset   of  , you can

choose  to be the empty set and get a continuous function  from  to  such that  is



the precise inverse image of  (and of course  does not take the value ). It then follows

that  is a .
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Now to prove the `if'  part, start with   and   as disjoint closed subsets. And write   as

intersection  of  a  countable  family  of  open  sets  's  because  ,  similarly  let   be  the

intersection  of  's.  Using  normality,  we  can  first  show  that  owe  may  assume  that  

intersection  is empty for each .  

So, you have  is contained in ,  is contained inside of , but they may not be disjoint.

 and  are disjoint closed subsets and so inside these open subsets you can choose a smaller

open subsets  and  respectively such that  and  are disjoint. But in contain . So, by

replacing  with  etc, we may as well assume that  is empty for all . 

Next we can also assume that   is contained in   contained inside   for all  , as

follows: Once you have the family   as above, inductively choose an open subset  

such  that   is  contained   contained  in   contained  in  the  intersection  of

. This is possible by normality of . Now ignore the old  and rename

 as .  

Now let  from  to the closed interval  be a continuous function such that 

is singleton  and  is . So, this is possible by normality of  again. Here I may not

get these sets as precise inverse images. That is OK. 



So, you have got a sequence of functions with a certain property. Take  to be some of these

’s only thing is before taking the sum, you should divide by some constant factors to ensure

convergence. So, I am dividing , because I know that these ’s are bounded by , so

this sum will be less than the summation . So, this will also convergent. So, this dividing

by some number is a general principle which you have to learn in analysis. 

It then follows that   from  to   is non negative continuous function because the sum is

uniformly convergent being dominated by summation   and all terms are non negative.

Now what happens that  is precised inverse of  under , Because if  belongs to , it must

be in every  so each term in the sum is zero so  is zero. But if   is not in , then it

cannot be in  for some  and hence it is not in  and hence  is . Since the sum

is over nonnegative values, it follows that  is not zero.   
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Similarly, we can construct a non negative continuous function  from  to  such that  is

precisely the inverse image of zero. All that you have to do is same construction as above

with ’s instead of 's. That is all. 

So, you have two different functions. I want a single function to do that job. So, this function

 is such that the inverse image of  is  and  is such an inverse image of  is . Now I want

one single function  such that under that the inverse image of  is  and inverse image of  is

, the other way round. 

So, for that, I just take  equal to . Note that dividing by  makes sense

because this sum is never . See,  first of all both  and  are non-negative. Next, if  is ,

that   must be inside , which is disjoint from . And outside ,   is not   so  is not

zero.  and  are disjoint, so  is never . So, I can divide by . But  is always

smaller than modulus of  and hence  takes values in the interval .

Finally, suppose this  is . What does that mean? This is so if and only if these two are

equal: . Therefore  must be . So,  iff  is a point of . Similarly,

 is equal to  iff  iff  iff  is in . So  is the inverse image of

 and  is the inverse image of  under .    
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So, this is the  perfect normality given by normality plus every close subset being . 

 

Now,  let  us  come  to  Nagata-Smirnov  Metrization  Theorem,  proof  which  will  be  much

simpler now, because we have perfect normality here.

A  space is meitrizeable (see there is no second countability condition now) if and only if

 has a  -locally finite basis.  The term  -locally finite basis, should ring a bell!  That  is

something to do with paracompactness. 

So, proof of only if part: So, that all that you have to do is start with a metric space and show

that it has a -locally finite basis.  is a metric space, we have seen that it is paracompact.

So,  for  each  ,  let   be  a  locally  finite  open  refinement  of  the  open  cover

. It is an open cover of , for each . 

So, that take  to be a locally finite open refinement of this one. So, for each , I have a got

a locally finite open refinement. All that I want to do is now,  take the union of all these ’s,

call it . This is a base for the topology on . This fact I am leaving it as an exercise, because

you have done so much of this kind of things. So, for all  is in all that is all you have to use.

Clearly this  is -locally finite,  because by choice, each  is locally finite. So by definition

 is -locally finite.  
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Let us know prove the `if' part. Let  be  space and  equal to a countable union of

's, be a base for , with each  being locally finite. Remember each base is also an open

cover for . I am writing down each  as the collection  where  is in an indexing

set . So, ’s are members of ’s. And each  is a locally finite family. This is all the

starting hypothesis now. 

Now, take  to be the union of all these ’s over . So, this  is going to be our indexing set

for the product. Last time you took , where  is the set of natural numbers. Now, I would

like to take  but I will do a slightly better job here, than taking the product space. However,

the proof here is now going to be similar to the proof of Urysohn’s Metrization theorem, in

the sense that we are going to produce an embedding of   inside the Hilbert space  ,

with the -norm. 

So, I will recall what is this . On any set  makes sense. That is what I am going

to tell you. I am just recalling the generalized Hilbert space here. For any function  from 

to , let us denote by  (you may read it as `support of ') the set of all those  such

that  is not . 

Now, take  to be the subset of the space of all functions from  to  such that  is

countable, and when it is countable look at the sum of all the , that sum is convergent,

i.e., sum over  of  is finite.  



In other words, it is the collection of all square summable functions, that is the terminology,

square  summable  functions  form a Hilbert  space.  I  will  just  use  the  word Hilbert  space

because the inner product here is not being exactly used only the norm is used and what is the

norm, norm is square root of summation of , if you want to know what is the inner product,

it is nothing but inner product of  and  is summation ; if you have complex valued

functions you take summation , that is all.  We are not interested in that part, we are just

interested in the norm,  under the induced metric,  this space is complete. 
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The first step is since every open cover has a refinement consisting of members of  because

 is a base right? (For every member  of the open cover and for each point in  you can

select a member of the  which contains the point and is contained inside . That will verify

this  statement.)  But   is  -locally  finite,  therefore,  from  3.26  it  follows  that   is

paracompact. So, that is the link between the condition -locally finite base and this situation.

In particular  is normal. What we want is that  is perfect normal. We will see why.  
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So, first we have seen that it is normal space. Secondly, we shall now prove that every open

set  in  is . 

So, now you see that the concepts of   and   are both coming together here.   means

what? union of countably many closed subset. Every open subset in   is  .  Then from

theorem 6.7, it follows that  is perfectly normal. You want to recall theorem 6.7. A normals

space is perfectly normal if and only if every close subset is . 

Take the complements, to get every closed subset is . 

Next  by  regularity,  given   belonging  to   open,  there  exist  a  basic  open  set

, such that  is in  and  is contained inside . It follows that if you



put   equal  to the union of all  these  , where   ranges over  , is a closed set,

because of local finiteness of .

Also note that   is contained inside   because each   is contained in  . Finally, it

follows that  itself is union of all these ’s. For each point  is inside some member

of  for some  and then it is in . So, what we have shown is that  is a countable union

of closed sets. So, that  completes the proof that every open subset is  .  Therefore   is

perfectly normal.
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Third step is to take for each , by perfect normality, a continuous function  from  to

 such that  is precisely equal to the set of all points  such that  is not equal to .

's are open subsets, so their complements are closed subsets, they will be precise zero sets

of continuous functions.

 

For each  , define   from   to  , (we are constructing these functions, so that

finally we can take all of them and put them inside the generalized Hilbert space), by the

following formula. I am taking a sum and then adding 1 just to be careful that it is positive,

you could have added any positive epsilon, no problem. 

So take  + summation of , where  ranges over , this is a locally finite family and

so. So, this sum is actually makes sense. So,  plus that makes sense, take the square root, that

makes sense. So, that is  . By the local finiteness of the family ’s here, each term is

actually  finite  now,  finite,  it  follows  that   is  well  defined.  For  the  same  reason  it  is

continuous also because it is a locally finite sum of continuous functions. This  plus that is

continuous and it is never . That is why I put  (or some positive epsilon here), I can take the

square root the square root is also continuous. 

Now, I can define  from  to  itself, in particular it will be inside  no problem, by the

formula  equal to .  is a function from  to . 



Note that for each  inside , there is a unique  such that  is in . Why? look at this

definition of . This is a disjoint union, each  here belongs to exactly one of the 's. Taking

this disjoint union is important, so that, I can now take  to be  divided by this number

 times the function , which is a non zero function. It follows that  are continuous,

and  taking  values  inside   now,  because   is  only   of  the  summands  involved  in  the

definition of ; so, the numerator is always smaller than the denominator and they are all

non negative. So, all  take values inside . 

So, the  coordinate of  is . You can think of  as taking values in the product

space. First of all, you have defined   as an element of  . But I want it to be inside

;  is a subspace of . 

So, this follows easily now. First of all for each fixed ,  is not equal to , for only

finitely many , for each , therefore  countable Recall that  is the set

of  where in it is not , the support. That is countable. 

Second thing is that for each fixed , if you take the sum of all of them after squaring where 

runs over , this is a finite sum and that is nothing but summation  where  runs

inside . But by definition of , the numerator is just the sum of  whereas in

the denominator we have  into , but  is in , so this  is equal to  itself. 

So, this is less than . If, for each  this is less than  when you take summation of all

of them that will less that the summation of  which is convergent. Therefore,  is an

element of . So, we have got a function from  into .  
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Student: Sir, may you please repeat the step? So, we had a, from starting with every element

of , we wanted to associate an element of , that was from step 2, we found that every



, what was concept so, we can associate a function so that it is exactly non zero. That was

the first step, First part of step. 

Professor: that will come now in the proof of injectivity and continuity of . That this is an

open subset and that is the precisely zero set etc is not used so far. Only local finiteness is

used.  so, that  we have the supports of these elements is countable,  .  So that   is

actually an element of .  

Student: divided by ?

Professor: this   term is brought for that, so that the sum is dominated by a convergent

sum. Not only that, why in the definition of , I have put  here? For two different purposes.

First of all, I should be sure that when I take square roots continuity is assured. I should not

bump into , if I want continuity is preserved after taking square root. Secondly, this term is

bigger than just the sum. So, there are two purposes here. So,  is defined like this, I told

you that adding any positive constant would have done the job here instead of adding .  So,

look at here now. These values are are inside . That point is not very crucial. But this whole

thing is less than  that is important, not just less than some constant.   
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So, how to ensure that. For each fixed ,  in , what is ? It is . So, the same  is there.

So, holding n fixed, first you take the sum that is a finite sum which is less than  and

then you take the sum over  so that is convergent. So, you are inside . 

Now comes the role of all these open subsets etc., till now they are in the back ground.  

Now, let us check that this   is injective: given  in  , since  is Hausdorff space

(we have assumed it is ), you will have , a basic element so that  is in  and  is not

in . 

So,  this  immediately  implies  that  the  corresponding   is  not  ,  but  .

Therefore,   is not  , whereas,  , because what is  ? In the numerator we



have . That is what it is. So,  separate points. Therefore,   will not be equal to

. So, this lambda coordinates will be different as soon as . So, this proves 

is injective. 

Note that a countable family of such functions  would not have been able to do this job.  This

is  a  local  base  we have  used.  Taking  a  countable  base  was  possible  if   were  second

countable.  However,  some  countability  was  necessary.  What  ensures  that?  -locally

finiteness. So, that plays the role here. Exploit it, to get into . Otherwise you would not be

able to get inside . 
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Next, we check that   from   to   is a closed function. Injective, closed, continuity

these 3 things we have to show one by one, continuity is taken at the last. 

If  is any closed subset of , you have to show that  is closed in . Take a point

phi outside of   but inside  . We are working inside   and the entire  . To

show that something is an embedding you have to take the only image and work inside of the

image. So,  , for  , because it is not in  . But then   belongs to  

contained inside .  is a closed subset to start with. So, you will have some  such that

 belongs to  which is contained in . This automatically implies that   is not ,

Whereas,   for all .  is the precisely equal to the set where  is non zero.

Therefore, the square of norm of , this is a summation of non negative terms and

one of the term is square of the   which is equal to  , which is positive.

There will be many other terms they are all non-negative terms. Therefore it follows that the

distance between  and  is bigger or equal to .  

Therefore,  cannot be in the closure of  

Since this is true for all points of  , this implies that   itself is

contained  . By DeMorgan law this just means that   is contained inside

. The bar of a set is contained inside the set itself, that means that set is closed. (Maybe

you can directly prove that that  is closed or prove that  is open etc.) 
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Now, let us check that  is continuous. Now, you see the full force of all these construction.

Given  belong to , and , we have to produce some open subset  around , such that

 belongs  implies norm of  is less than epsilon. So, this is the continuity of

 at the point . I am using the norm on the codomain.  is the given topological space. So, I

have to use open subsets in . 

As  soon as the   is  given,  choose  some integer   such  that  the  sum of  ,  from

 to infinity is less that . (Earlier I had used the notation  in this place now I am

using , no problem.)  to infinity  is less than .

By local finiteness of all these ’s, we get an open set  around  such that this open set 

meets only finitely many members of  for all . For each , you will get an open set

 and then you take  to be the intersection of these finitely many 's. That is all. This  is

the neighborhood of , which will meet finitely many members of ,  ranging from .

Let us denote these members by  for . They will belong to one of the  for

 and in all they are finitely many as  of them.

Now, choose a neighborhood  of  such that  is inside this , a smaller neighborhood, I

am going to choose such that   is less than, (I have to the RHS carefully,

some number, say . This is possible because all   are continuous and we have to

handle finitely many of them.  



This yields, for all , if you take the summation of the squares over , is less

than , since there are  such terms. It follows that sum of the  for

all  where  itself ranges over  to  is less than . 

So, that is a very rough estimate actually, but that is enough. Because this summation here, all

are non negative terms. Though this is maybe infinite sum, for each fixed  the sum over all

 is a finite sum and is actually less than , and hence when you range  from  to

infinity it is less than summation  from  to infinity which is less than . This is true

for  in . Therefore this proves the continuity of  and thereby the theorem is proved. 
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So, here are a few exercises for you. First one here is not very difficult. Every metric space is

has a -locally finite base. I have used this result and mentioned it as an exercise  separately

earlier. 

There are many problems in metrization,  you may like to talk about. For example, when can

a topological space be given a metric which is complete. Such things are called complete

metrization problems. We shall  not be able to discuss such things which are too special.

Thank you.


