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Hello. Welcome to NPTEL NOC, an introductory course on Point-Set-Topology Part-II.

So we begin with a new chapter, Metrization. The problem of when an arbitrary topology

comes  from  a  metric  is  broadly  known  as  metrization.  Apart  from  the  theoretical

importance of this question, its solutions, let me say, there are many solutions, play a

very important role in our understanding of topological spaces, in general.

In this chapter, we shall focus on two such solutions. One is Urysohn’s Metrization, other

one is Nagata-Smyrnov Metrization. The same kind of result was proved separately by

Nagata  as  well  as  Smyrnov.  So  here,  in  the  Nagata-Smyrnov  metrization,

paracompactness enters into picture, namely, with its property of admitting sigma-locally

finite refinements for every open cover.  So we are going to present  the proof due to

Nagata. For Smyrnov’s proof, you can see the book of Willard, for example.
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So let us make a formal definition. Take a topological space  . Then it is called

metrizable topological space if there exists a metric on the underlying set   with the

family of all open balls forming a base for tau. In other words, some set  is open if and

only if  for  each  point  inside  ,  you have  an  open  ball  corresponding  to  the  metric,

centered at the point and contained inside given set  . That is the topology induced by

the metric. If that coincides with tau, we will say  is metrizable.
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The difference between a metric space and a metrizable space is that on metric space, a

metric  has  been chosen already,  whereas  on a metrizable  space only  the topology is

chosen and it is possible to choose a metric which gives this particular topology. In fact,

there may be several metrics which give the same topology but we will be interested only

in the study of the topology there not the metric itself.  

Starting with the topological space, we naturally ask the question when it is metrizable.

Any answer to this should be purely in terms of the topological properties. Turns out that

there  are  number  of  very  useful  answers  to  this  question,  rather  than  some

characterizations  which  may  be  useless.  Often  characterizations  can  be  merely

tautologies.  That  is  why  if-some-thing-then-this-happens  kind  of  theorems  are  more

valuable than if-and-only-if theorems. The alternative condition may be as difficult as the

original. Mind you, it is not always the case. Several characterizations always help you to

find  things also in an easy way. So that is not a global remark anyway. 

So we shall study only two such results here. One is Urysohn’s Metrization, and the other

one is due to Nagata-Smyrnov.
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So today in module 26 let us concentrate on Urysohn’s Metrization theorem. To begin

with,  we  have  this  theorem  about  products  which  will  be  used  in  the  proof  of  the

Urysohn’s metrization. What does it say?

Take a countable family of metrizable spaces. (This `countable' condition is important, It

of course includes finite). Then the product is metrizable, with the product topology here.

Whenever you take the product, the first thing you do is to take product topology.

(Refer Slide Time: 05:25)

So how do you do that? To begin with, for each  , you can choose any metric on  ,

there is one, which gives you the corresponding  , whatever topology it may be. But

then, I would like to choose it carefully by choosing it to be bounded by some number,

. You know how to do that. Namely, if  is a metric, you can define capital 

to be the minimum of  and . 

In particular for each , I will do the same thing taking . Maybe  will also

do. Something, some control for each , the control should become stronger and stronger

as  increases. That is all I need here. So you can take , for example.

Now, once I have chosen that, now for each  and , i.e.,   and  inside

the product of all  , we define  to be the sum of all d  So when I take



this sum, you should know that this is convergent. Otherwise this will not make sense as

an element of .

And that is precisely the role of this choosing these metrics properly. The -th metric 

is bounded by . So each element here  will be less than or equal to .

Therefore, the sum total, less than or equal sum total  which is convergent. So 

makes sense, no problem. 

Moreover, I want to claim that this delta is going to be a metric on the product space.

So first of all suppose,  is . That means look at this summation, this summation is

sum of all non negative numbers. So if the total is , each of them must be 0. 

is  ,  implies  .  This  is  true  for  every   which  means   and   are  the  same

elements. 

Of course, if you interchange the slots for  and  this value  does not change because

each  is symmetric. Therefore . 

The  triangle  inequality  is  also  valid  because  it  is  valid  for   for  all  .

 is less than or equal to . So you can take the sum. That

will  give  you   is  less  than or  equal  to  .  So  that  is  also  easily

verified. 

So what remains now is to to prove that  this metric gives you the topology that we have

already chosen, namely, the product topology product set. 

Giving a metric on a set, is not at all difficult. There are so many metrics. You can just

take  a  discrete  metric  also and so on.  The  point  is  that  the topology that  the  metric

induces should be same as the one that we start with. That is the thing. 

One thing is sure, namely,  if this  is a finite product.  So that is the way we have become

bold enough here to do this one, and our boldness pays here.
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So let  be given and let  belong to product of  be any point. First, choose

a number   such  that  summation   for  all  ,  is  less  than  .  So this  is  the

remainder term after  -terms in the convergent series summation  . That should be

less than . 

Next, choose  such that the sum of  where n ranges from  to , viz., the sum of

the first  terms multiplied by . This sum be too large, so multiply it by  such that

it becomes less than .  has to be chosen that way. So, essentially, the sum of first 

terms is controlled by  and the sum of the remaining terms are controlled, by the choice

of . So, that is the whole idea.

Now consider  to be the set of all  belonging to  such that . So

 an open ball inside  centered around . Now take  to be the subset of the product

space consisting of points  such that  is inside  only for . For the

rest of the 's, there is no condition.

Clearly, it follows that  is inside , because  is in  for . On the rest

of the coordinates, there is no condition. That is clear. Also clear is that  is open in the

product topology.   

If  is inside , what happens?
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The first   coordinates of  are such that   and total is less than .

Also by the choice of , the sum total of the rest of  is less than . This just

mean that the distance  between  and  is less than epsilon. That is,  is in the open ball

of radius epsilon. Thus we have shown that   is contained in the open ball   of

radius epsilon around . 

Since  this  is  true  for  all   and all  epsilon,  this means every  open ball  in  the metric

topology is open in the product topology. So therefore, the metric topology is finer than

the product topology. 
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Now, to show that an open set in the product topology is open in the metric topology, we

shall  show that  the identity  map from the metric topology to the product topology is

continuous. I have used the notation  to denote the metric topology on the product set

and   to  denote  the  product  topology.  Suppose  I  show  that  the  identity  map  is

continuous. What does that mean? Take any open set in the product topology, this is

identity map, under the inverse image we get the same set which should be in . 

So how to show any map into a product space is continuous? Any map into the product

space  is  continuous  if  and  only  if  all  the  coordinate  projections  of  that  map  are

continuous. So take projection map  from the product space into  composed  with

the identity, it is just again the projection map  but the domain is now with the metric

topology. What I get is, I have to show that product  with metric topology to  with

the usual topology, whatever topology it comes, this is continuous. So that is what I have

to show. Then, this identity map will be continuous. 

Since both domain and codomain of  are metric spaces, because on  coincides

with the topology given by  ,  continuity of   can be easily  checked by sequential

continuity. Suppose  is a sequence in the product space which converges to ,

then we have to show that or every   converges or  . That would prove the

sequential continuity of  . But what is the meaning of this sequence converges to this

point? The sequence  converges to zero.  

Note  that  this  is  a  sequence  of  non  negative  terms,  and  we  have

. By sandwich theorem, this means that 

also converges to zero. This is the same as saying that  converges or .

So what we have proved here is that a countable product of metric spaces is metrizable. 
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Now, every subspace of metric space is metrizable, there is no problem. You have seen

this one in  part I itself. You can take the restricted metric that will give you the subspace

topology,  that  is  all.  From the  above  theorem,  it  follows  that  if  you  take  ,  a

countable product of copies of the closed interval , that is metrizable.

In general, I can call it Hilbert cube when I am refering to it as a topological space. There

is no problem. As a metric space, you will have to see what metric you give. Here, I am

taking only product topology. It can be made into a metric sapce.  Quite often people call

it Hilbert cube only after choosing a specific metric.

So that is why I have said that this is metrizable. Thus, we would like to embed a given

topological space in a Hilbert cube. Then it will follow that that the given topological

space is also metrizable. Thus, it remains to find out which are the spaces that can be

embedded in a Hilbert cube.
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A topological space is embeddable in a Hilbert cube if and only if it is a second countable

 space. In particular, a second countable  space is metrizable. 

So this is the final theorem of Urysohn’s Metrization. What we are going to do? Take a

second countable  space, i.e., regular and  and we will show that it can be embedded

in the Hilbert cube.
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In fact, what it  says is if you have a subspace of a Hilbert  cube, it  has to be second

countable   space.  This  is  if  and  only  if.  There  is  no  other  choice.  So  Urysohn’s



Metrization theorem is used with because of its  `if' part. It is only a partial solution to our

problem, the sense that there may be many other metric spaces which are not necessarily

second countable. It does not answer those things. So it is only a partial answer but it is a

very useful theorem.

Proof is very easy now. See  is compact and every subspace of a compact metric space

is second countable. Therefore, the necessary condition,  in the statement of the theorem

follows. Any subspace of a metric space is in fact  also. So it will be automatically  . 

Now conversely, let   be a second countable   space. We have proved earlier that a

regular  Lindelof  space  is  normal.  Second  countable  implies  Lindelof.   includes

regularity. Therefore, our space is automatically normal. To show that it is embeddable in

, we will use Tychonoff’s embedding theorem.

So, 5.19. It is sufficient to find a countable family of continuous functions from   to

 which separates  points  and closed sets.  If  it  separates  points,  the corresponding

embedding  will  be,  corresponding  function  that  we  are  getting  will  be  injective.  If

separates closed sets and points, it will be an open mapping onto the image.  That is why,

it is an embedding that is how we have proved it.

So  we will  only prove  this  part  now that  there  is  a  countable  family  of  continuous

functions which separates points as well as closed sets. So automatically, separate points

because points are closed in our  because  is also Hausdroff space also,  space also.
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So begin with a countable base  for . This countable family is now coming because of

second countability of . So start with the countable base for the topology of . Put

equal the subset of  consisting of pairs  such that  is contained inside . So

this kind of things will make sense because of regularity. Otherwise, such things may be

empty.  That  should  not  happen.  In  fact,  there  are  plenty  of  members  in   due  to

regularity of .

 Nevertheless,   is  a  countable  family  because   is  countable.  Now,  for  each

member , let  from  to  be a continuous function such that this 

operating on  is singleton , and operating upon  is .

So this is where we have used normality of  . You see   is closed,   is closed.

They are disjoint because  is contained inside V. For each pair , you have an 

, which takes   to   and   to  . This family   as   varies over   is the

required family that you have to show that it separates points and close subsets.

Given a closed set  and a point  outside it, we can first find a  belonging to , in the

base, such that  is inside  and   is contained inside .   belongs to , and

 is open because  is closed. Therefore, you can find a basic element , as above.

Then, we can find  again inside  such that  is inside  contained inside  contained

inside  because of regularity of .



Now what we have got is this  is a member of . It follows that the corresponding

 separates   from  . Over. The whole of   goes to   and so   goes to   and the

complement   goes  to  .  And   contains  .  So  the proof  of  our  theorem,

Urysohn’s metrization theorem is over.

Basically because we have already done Tychonoff’s theorem and then we just finished

the product theorem, this countable product of metrizable spaces is metrizable. So this is

the way to remember. Tychonoff’s theorem and this product metric for countable, metric.

So let us do next time, Nagata-Smyrnov. Thank you.


