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Hello. Welcome to Module 24 of NPTL NOC on Introduction to Point-Set Topology Part

II. So we shall continue the study of Stone-Weierstrass theorem. Today, we will take the

complex  case  and  then  we  will  also  study  the  extended  version,  namely  for  locally

compact spaces.

So theorem 5.36: Complex Stone-Weierstrass. Let  be a compact Hausdroff space,  be

a closed sub-algebra of , the space of all complex value functions continuous on

. Let   be a closed subalgebra of   which separates  points,  (this hypothesis

should always be there) and contains a non-zero constant (this is condition is optional,

but this time, we are discussing results only under this hypothesis.  There is one more

condition). Further assume that   is closed under conjugation. (This hypothesis is very

important in this case, viz., we are now studying complex valued functions). 

The  conjugation  operation  on  elements  of   is  coming  from  the  complex

conjugation in . A functions taking values in , you know what is the conjugate of that.



So that is  going to . So if  is there,  should be also there is the extra condition, the

meaning of closed under conjugation.) 

Then this  is the whole of . This is the new statement.

If you remove this condition `closed under conjugation' and take  instead of , then this

is  the  real  version  of  Stone-Weierstrass  theorem  that  we saw.  Corresponding  to  the

theorem of Gaddy, there is a version here that I will leave to you as an exercise. So we

will only concentrate on the main version here.
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Consider  as a sub-algebra of  over the reals. This is like a real vector

subspace of  , which is a real Banach subspace. Let us put   here equal to A

intersection  .   is a real  sub-algebra of  .   is a complex sub-

algebra but it is also real sub-algebra. So when you take the intersection, this will be the

closed sub-algebra of , as an  algebra,  vector space, as a real vector space.

So this  is a sub-algebra, a closed sub-algebra real subalgebra. Now, something nice

happens. Because  is closed under conjugation. So that is what we have to use. If I write

an element of  as  equal to , any complex valued function can be written

uniquely as a sum of its real part and the imaginary part. You can always write  

where  and  are now inside . They are continuous also.



Since   is closed under conjugation,   will be also inside  . Therefore, their sum

will be inside   will be inside  , that is nothing but u. Similarly   this will be also

inside . When you add the two you get  will be just divided by , you have to take

that will be also  . So you see that   belongs to   implies real part of   is inside  .

Since it is inside  as well as inside , and therefore, it is in .

Similarly, the imaginary part also inside , because once  is in , if is in , its real part

is nothing but  . Thus you have shown that   belongs to   implies both its real and

imagined parts are inside .
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Now, given  not equal to , let  belong to  be such that . As usual

you can write  as . Then  implies either the real parts are distinct or

the imaginary parts are distinct (or both). When two complex numbers are different, it

can happen only if the real parts are different or imaginary parts are different.

Now,  and  are inside , so  also separates points. Either I can take the imaginary

part or if I can give me a real part or imaginary part. So  separates points, implies 

also separates points, thanks to closed under conjugation. 

Without that, you could not have concluded this one.



For similar reasons, if   is a non-zero constant inside  , a non-zero constant could be

what? Could be a complex number, one, either real part or imaginary part must be non-

zero.  So the  same  hypothesis  will  be  true  for   also.   also  contains  a  non-zero

constant. This time, non-zero constant has to be real. So you have to take real part or the

imaginary  part,  whichever  is  non-zero.  They  will  be  there  inside  .  So  all  the

hypotheses are satisfied by .
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Therefore, by our real part theorem, we conclude that  must be equal to the whole of

 But then  will be also inside  because after the entire  is in .  is

a complex vector space. So i times this will be also inside . Therefore  which is

nothing but , the sum is inside . Therefore  .

So that is the end of the proof for complex case. Alright. 

Let us go to the extensions of this one, to the case of  locally compact spaes. Once again,

Alexandroff's  one point compactification plays an important role here. Our job will be

quite simple when you pass on to the Alexandroff's compactification. And then we can

apply these theorems.
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So I have told you, I repeat, you may state and prove a theorem similar to this 5.35 due to

Gaddy in the complex case,  which we shall  leave  you as an exercise.  We shall  now

discuss  the  case  when   is  locally  compact  and  Hausdroff.  As  usual,  we  will  now

combine both real and complex cases. This K denotes either  or .

So take a function  from  to . We say   `vanishes at infinity', (this is a phrase which

I am defining. I am not defining infinity here. There is no infinity as such yet but we are

defining what is the meaning of `  vanishes at infinity'. Understand? What is that?) If for

every epsilon positive, there exists a compact subset  of  such that  for all

,  x in the complement of .

Away from a compact set, I should be able to control the value of .  should be

arbitrarily small. Whatever  , I have been given, correspondingly,  I  should be able to

choose .  will depend upon  as well as , of course, such that away from , 

will be less than . That is the meaning of vanishing at infinity.
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Just let me give you some examples. 

If   is compact, of course, every function from  to  vanishes at infinity, vacuously.

Why? Because I can take  equal to the whole of  and  is empty. So there is no

condition. That is all.

On , look at this function given by  equal to . At , this is  . And then it

just tapers down and as  goes to infinity, this tends to .

The above example is a model. How are we going to use these word as  goes to infinity

this function tends to  , in the gereal  case?  So we have converted that into arbitrary

topological space by this definition here, vanishing at infinity. Outside a compact set, it

will become less than epsilon. Given any epsilon, you can choose your compact set such

that that condition is alright. That is the meaning of that. So this example has motivate the

definition above.

A constant function on a non compact space vanishes at infinity if and only if it is the -

function. Take any constant function, take your epsilon to be such that it  is less than

modulus of that constant. That is possible if the constant is not zero. Then, that condition

will not be satisfied at all. So it will not vanish at infinity.



This  is  a  strong conclusion  here,  you  see,  because  we are  interested  in  subalgebras,

having non-zero constants. With non-zero constants, then this condition will definitely

fail now. So these two conditions are somewhat opposite of each other.
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So let X be a locally compact Hausdroff space. (By the way, this condition is there for all

spaces below). Now we are only interested in locally compact Hausdroff spaces.)  Let

X^star denote is one-point compactification. I want to specifically say that its one-point

compactification when I mean the, so I am referring to Alexandroff’s compactification.

A continuous function  from  to  is the restriction of a continuous function  from

 to  such that   is , if and only if  vanishes at infinity. 

So the definition of vanishing at infinity has been given a different meaning here. Take a

-valued continuous function which vanishes at infinity on a locally compact Hausdroff

space .

Then, you can extend it to a continuous function on the one-point compactification by

sending the infinity or the star to 0. And conversely.  

You can always define  equal to , but then  may not be continuous. After defining

this way, if it is continuous, then this   must be vanishing at infinity. So this is just a

consequence of the definition of the topolpogy , namely, what are the open subsets of



 which contain the point infinity. What are the neighborhoods of infinity? They are

nothing  but  the  complements  of  compact  and  closed  subsets  of  .  So  that  is  the

hypothesis. So that will automatically give you this one. So I have, I am not going to

explain anything more than that here. The proof is easy.
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\

So now comes this extra notation we have here. Let   denote the space of all

continuous functions on   which vanish at  infinity.  Then   is  a  closed sub-

algebra of the Banach algebra of all  bounded continuous functions on  . When   is

locally compact Hausdroff space, it can also be identified with the maximal ideal  of

the algebra . 
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Now,  we  can  state  the  Extended  Stone-Weierstrass  theorem.  Start  with  any  locally

compact  Hausdroff  space.  Let   contained  inside   be  a  closed  subalgebra,

which separates points of  and is a closed under conjugation, if . (So this closed

under conjugation is not necessary or even if you put it, it is harmless, whenever  is .

That  is  the only case,  I  have  to mention these two results  separately.  Otherwise,  the

proofs are all the same. Together,  I can handle the case   or   together. As soon as

, you should assume this extra condition. That is all.)

Then the conclusion is that, either  is , the entire algebra or you have a unique

point   such that  this   is  .  I  am using this notation

because  we  should  not  confuse  it  with,  the  ,  which  has  a  different  meaning  in

. This is the subspace of all  in  which vanish at  as well as vanish at

infinity. So, you could use the notation  if you like. Fine. Of course, this is also

equal to the set of all continuous functions  from  to  which take the value zero at

 as well as infinity. 

So the sub-algebra   can be this one or  it  should be the whole of  it.  So this  is  the

conclusion of the extended Stone-Weierstrass  theorem. So we are  not  going to  study

 in particular here, the whole space.  We are only going to study those which

vanish at infinity. So that is the key for us. So that we can use the compactification of .
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A little bit caution is necessary here before we apply the result for compact case. I told

you that we want to convert the problem into studying the space of continuous functions

on a compact space, by going to one-point compactification. But you have to be a bit

cautious here.

Namely,  consider  the  case  when   itself  is  compact.  Then C  is  nothing  but

,  which we have seen.  Every  point,  every function  now vanishes at  infinity.

Hence, we can directly apply the result in the compact case. So, we do not have to prove

this one, but we have to consider this one because a compact Hausdroff space is also a

locally compact Hausdroff space.

That is why we have to check that the statement is correct in that sense that is all. We are

not proving that. So that part is taken care of. Therefore, we can now come to the case

when   is  locally compact.  So I  repeat,  consider  the case when   is  compact,  then

 is nothing but . Hence we can directly apply the earlier theorem.

Now, come to the case when  is non compact. As observed before, the only constant

function which vanishes at infinity is 0. Therefore,  does not have any non zero

constants.  In particular,  the subalgebras  of   also have no nonzero constants.

Therefore, the regular Stone Weierstrass Theorem cannot be applied here. So you have to

take Gaddy’s version, the other part.



Now, as a subalgebra of ,   may not separate points of . So that is also a

problem. We have assumed that  separates points of  but when you pass to , and

think of  as a subalgebra of  this may fail to separate points,  because there is

an extra point now . So we have to be careful. 

So let us study these things case by case.
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So assume first  that   separates points of   also.  Remember,   is  a sub-algebra of

. Therefore, for each , you can put  and think of that as a function from

 to . There is a unique such . What is ?  is going to , that is the only way you

can extend . So you can think of  as a sub-algebra of .

We can then apply the standard theorems 5.35 Gaddy’s version to conclude that   is

 or there is a unique point  such that . So these are the two parts

of that. But  is already in , which is not the whole of . So, the first

possibility is ruled out. 

Therefore, it is the second possibility. But then this unique point   cannot be inside  

because then  does not separate the two points  and , contradicting the assumption. So

this  must be equal to . Therefore,  is nothing but . Wonderful. 



Now comes the little more complicated case. Suppose  does not separate points of .

Then, what I am going to do?
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In passing,  we note that  since   separates  points  of  ,  the extra  assumption that  

separates points of   is the same thing as assuming that for every point  , there

must be a function   belong to   such that   is not equal to zero. This is just the

same as saying that  is not contained in any maximal ideal . 

If this is not true, means equivalently what happens when  does not separate points of

? Since   separates  points  of   but  does  not  separate  points  of  ,  you have  to

analyze this correctly, this can happen only if there exists a unique point   such

that   is inside   which we have denoted by  . Now you have to

show that equalityholds.  So our task is not yet over. 
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Now consider subspace . Throw away the point . You have got an open

subset   of  ,  that  is  also locally compact  Hausdroff.  So that  hypothesis  is  not  yet

changed. Now, I have to make some more cases here. 

Suppose   is not an isolated point. (That is the easier case, perhaps? Indeed, the other

one is too easy, that is why I am considering it later.)

The inclusion map  from  to  induces an algebra homomorphism, which I write as 

from  to .  is a subspace. So what is this? Take  to  the inclusion

map and  then  follow it  by the function   from   to  .  So it  is  .  So  it  is  like

restriction map actually. But the restriction map is injective now. This is always there,

this restriction algebra homomorphism is always there. In general it may not be injective.

It is injective here, because   is not an isolated point in  , which just means that the

subspace   is dense in  . On a dense subset, if two continuous functions agree, they

agree on the whole space.  Therefore, this   is an injective mapping. Now look at the

image of  under .

 is what? Those things which vanish at infinity. Intersect with  gives those

which vanish at   also.  So   of  that  is  nothing but  .  What  is  meaning of

? Again, those continuous functions on  which vanish at infinity. As  varies



over compact subsets of  , its complement will be also a neghbourhood of   as

well as `neighbourhood of infinity for .  

So this is an important point. Without referring to any extraneous points and so on, this

image under  is just the set of all continuous functions on  which vanish at infinity. 

Now, consider the one-point compactification  of . Since  is the unique point such

that  is contained inside , it follows that  separates points of . Uniqueness of 

is important here.

Now, you see,  did not separate points of this . That was the starting assumption. But

after throwing away  and taking the one point compactification, in a sense merges the

bad point  along with the point at infinity to be . That is the whole idea here. It follows

that this  now separates points of .

Therefore, we can conclude from Case I, that  must be , which is why we have

defined, this image of this one. I am just writing  intersection this itself because  is

injective mapping. 

So that is the end of one subcase. What is the remaining subcase? When  is an isolated

point of X. 
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Here you do not need much topology, it is just algebra now. How does   look

like? At the isolated point you are free to define the function whichever way you like. So

that is a free point. So it can be assigned any real or complex number, any number in .

Therefore, what happens is   is nothing but  .  This second factor

corresponds to arbitrary values taken at the point . With, what is this product structure,

I want to tell you. Namely, take the inclusion map  from  to , which we have taken

earlier.  Then   is  the first  projection.  The second projection is  the evaluation of  the

function at the point . So if I know what are the two projection maps here, I know the

product structure. In other words, every function element  of  can be written as

the sum of . That expression will be unique.

Therefore,  is nothing but . See, `vanishing at infinity'  does not

have any effect values of the function at the isolated point . Because whenever you take

a compact set, you can include the single point   also inside this compact set. Away

from that compact set vanishing is same thing. So  is .

And , the ideal, is nothing but  because this  factor will go away. Things

which vanish, then  factor will go away. Therefore, we are in the situation wherein  is

contained inside , and separates points of , namely, Case 1. So subcase (b) is

reduced to Case 1. Therefore, we conclude that this  is nothing but  which is

. This was Case 1, if you should recall here.

So this completes the proof of the theorem that for locally compact spaces. How does a

closed sub-algebra look like for locally compact Hausdroff spaces.  Take a closed sub

algebra of the algebra of all continuous functions which vanish at infinity. For that, you

have this, this is one extension. I do not say this is the only extension. There can be many

other possibilities here. This is one of the popular results. You can also have a look at

Siemon's book for such versions. So thank you. 
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Maybe, I will let you know a few of the exercises here before closing up. They are not

directly related to this one, but since we are studying function spaces, I think these are

relevant. 

(1)  Prove that  the space  of  all  continuous functions on  ,  this  Banach algebra,  is

separable. Separable Banach algebras are more rarer, and they are very important.

(2) Let  belong to . Instead of , I put  just for writing down. This result  is

actually  applicable  to   also.  Put   equal  to  the  integral  over   of   

multiplied by  . So this   is a weight function.  For each   with one

function ,  you have these  which are these constants here. Put   equal to the

sequence  and so on so. This is the definition.

So I have taken  and then I have produced a sequence here, which can be thought of as

function  from  to . Show that this map  is injective. What does it mean?

If  and  are different, at least one of them,  and  will be different for some

. That is what you have to show.
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Now  this  exercise  is  directly  related  to  the  Stone-Weierstrass  theorem.  Through  the

following  -variable  version  of  Weierstrass  approximation  theorem.  Weierstrass

approximation theorem was only for the interval, closed interval to . Now, you have to

prove it  for   variables.  What is that? I  have given the version also here in the next

exercise.

(1) Any continuous real valued function on a closed rectangular box inside   can be

approximated by a polynomial in  variables. Deduce from this, that any continuous real

valued function  on a closed and bounded subset  of  ,  (instead  of  the box),  can  be

uniformly approximated by polynomial functions. Here also you can put the `uniformly

approximated' word.

(2) Show that any real valued or complex valued continuous function can be uniformly

approximated by a polynomial in a complex variables  and . A polynomial in  and  is

different from just being polynomial in  and taking some conjugation. For example  can

be written as . So that is the whole idea here.

Contrast this with the fact from complex analysis. (If you do not know this, you may

learn it from somewhere).  Look at the simple function . This function cannot

be approximated uniformly on the unit circle by a polynomial in .



The unit circle is closed and compact. Only unit circle you take. Do not take the whole

disk. Whole disk does not make sense because  is not defined on the whole disk; at 

it is not defined. Try to find a sequence of polynomials which converges to .  It is not

possible.

But  why it  should  be  true,  I  mean  because  why cannot  we apply  Stone-Weierstrass

theorem for complex case to this function? After all, this is a nice function defined on

. And then I am taking a compact subset there, the circle. So what is wrong? So you

have to explain that. Do not make this mistake that Weierstrass theorem can be applied

here. Nor Stone-Weierstrass theorem. Why? Just tell me why. There is a one line answer.

That is this exercise.
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There are some more exercises. These exercises  will be there in the pdf file I am going to

give you anyway. So you do not have to depend upon the slide. But I would like to show

it in the slide. That is all.

Alright. Thank you. So let us meet next time with a new topic.


