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Hello, welcome to Module 23 of NPTEL NOC course on Point-Set-Topology Part II. So, we

started with Stone-Weierstrass theorems, yesterday we have proved Weierstrass approximation

theorem and prepared partly  some ground for  Stone-Weierstrass  theorem.  So, today we will

continue.  We  will  need  one  more  concept  which  so  far  we  have  not  introduced.  We  will

introduce this concept only for directly applying it  here in this context. So, we are not going to

treat this on its own in general context. 

So, this is the concept of a lattice. A subalgebra  of  is called a lattice if it satisfies the

following condition: Given any two elements inside  , the maximum of   and   must be also

inside . Remember, maximum of any two continuous functions is again a continuous function,

first of all. So, it is an element of . What we want is starting with  and  inside , the

maximum must be also inside . Similarly, minimum must be also inside . So, then we call it a

lattice. 

In particular what happens if you take instead of just two elements, suppose you take finitely

many of them? Then also maximum and minimum make sense and they will also be there in 



by induction.  first you take the maximum, then take  and the maximum of these two, that

is the same as taking the maximum of  together. So, you can apply that. So, take finitely

many elements  of   then the maximum and minimum will be also inside  .  So, that  is  the

meaning of a lattice. So, let us continue the study.
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Let   be  a  closed  subalgebra.  This  concept  you  have  already  introduced  earlier.  A  closed

subalgebra of  is a lattice. Therefore, this is comes to us free of charge, we want to start

with  closed  subalgebras  after  all,  and  they  are  automatically  lattices.  So,  this  is  the  only

additional property of a closed subalgebra that is what we are going to exploit here now. That is

the content of this lemma.

So, first let us see that a closed subalgebra is a lattice. So, that is a one-line proof here. Because

maximum of   and   can be written as   and  Minimum of   and   is also

similarly equal to . 

So, this you must have seen in many other places like in measure theory and so on. So, if you

have not seen it, spend some time and verify that these two are correct formulas. So, if  and 

are inside ,  is an algebra, therefore,  is there, and  is also there. And its modulus is

there  why  that  is  what  we  have  proved  earlier,  there  we  have  used  to  closedness  of  the

subalgebra .



Using Weierstrass theorem we have proved that if some function is there, then its modulus is

also there provided the algebra is a closed subalgebra. Therefore,  is there,  is there,

the sum total is there divided by 2 is also there. Similarly, minimum is also there. So, a closed

subalgebra is a lattice is an easy consequence of what? Weierstrass theorem has been used here,

namely, once  is there  is there in a closed subalgebra.  Let us go ahead now.
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Last time we introduced this algebra , and we studied all possible subalgebras of .

So, now, we are going to explore that. For each , let us make this notation,  is

the set of all ordered pair  of real numbers, it is a subset of  now, where  ranges

over this , that  is the closed subalgebra that we are studying.

So,  is subset of  . Indeed, it is a vector subspace, it is easy to check that. Indeed, it is a

subalgebra as well. If  is in algebra, it follows that  is subalgebra of . Why? Because if

you multiply two such elements,  say  . It is  .

So, that is the multiplication of two functions inside this algebra  and inside  also and

 is in .

So, similarly addition scalar multiplication all these things you can check. So, this   drops

down to  just  a  subalgebra   for  every  pair  of  elements   of  .  So,  whatever  is



happening here,  will tell  you the entire story about the algebra  .  That is the beauty of this

approach here. 

According to this lemma that we have studied last time,  being a subalgebra of , is equal to

one of these five things: , or , or  or the diagonal or the whole of . So, let us go

ahead now.
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Let  us  put   equal  to  all  those   such  that  when  you  take  the  ordered  pair

 (it  is  a  condition  ),  is  inside  ,  for  all  .  It  is  a  non  trivial

condition on  ,  suppose   is  already  inside  ,  then this  condition is  automatic  because  the

definition of   itself is  like that. So,   automatically contains  . So, this   looks like a

fattening of , something larger than . 

The following lemma is just an alternative description of what is this . So, here we are bringing

the point- separation property of a subfamily of , in a strange way you have to just watch

it out. Anyway, first of all I will give you an alternate description of this . 

An element  inside  is inside  if and only if, for every , there exists a  inside

 such that  is equal to . This  is inside .



For each pair  ,  there is a   in  , with the above property.  This is  the strong way of

separation of points. To begin with   and   may be chosen distinct points and   may be any

continuous function which separates them. Then we want a member of  viz.,   to do that job,

in a very stringent way namely,   and . 

So, in some way this is trying to encode the point-separation property. But just do not bother

about that one if you do not understand it now.  

Just check that this description fits this definition of . Take an element  inside . That means

what?  is inside . What is ?  is nothing but some , where  is an

element of . And that , I am calling it , because it depends upon  and . For different  and

, it could be different ’s, that is why the notation . So, this description is obvious.
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So, now, here is a picture of the same property that I have told.  So, the function  is inside 

means  what?  This  function  is   here,  some  continuous  function,  take  any  pair  of  points

 whatever.  Look at   and   it  can be captured by a function

 is just any element in the larger algebra .

There is an element  of  such that  and  so that is the meaning of

this. Similarly, for any other pair . So, that is the meaning of capturing. So, somehow you

know  if  you  choose  a  lot  of  points  fitting  the  curve  then  can  guess  the  actual  function

approximately. 

In all approximations, say for instance, Newton's approximations and so on, you choose a lot of

points  and  then  you  choose  something  going  through  them  that  is  an  approximation  for  a

function. So, that idea is coming here now, in a hidden way, in a very simple way, without our

noticing it at all. All that you have to do is study the subalgebra of . So, we will see that how

to do this one.
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Clearly, I told you earlier that   is contained in . The crucial topological result in which we

reverse this inclusion is the following: Let  be a closed subspace of  and a lattice. (In

particular, for a closed subalgebra,  these two conditions are satisfied.) Then this  is contained

inside . In other words, these two are equal.  So, this is the crucial lemma here. You have to do

a little more combinatorial topology. Let us see, how you show that every element of  is inside

.
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Let  be inside . Given , we shall show that there exists a  such that .

What does that mean? This means that   is approximated by functions from  that means  is

inside  , but   is   because we started with a closed subspace. So, this is our idea. How to

construct the  such that  is inside ? So, for each , fix  as in Lemma 5.32.

This is what we have seen. Now, put  equal to the set of all  such that  is less than

. So, this is the left ray. Similarly, let  be the right ray, the set of all  such that

.  These  two  rays  are  around  the  point  ,  one  is  from   to

, and this one is from  to . So, these two rays I have taken. Of course, I

have taken the inverse image all   such that   is inside this ray, which means it is the



inverse image of the ray under . So, this is  and , these are open subsets of  obviously.

Note  that  both   are  inside   as  well  as  .  Why?  Because   and  so

,  and is bigger that .   

In particular, fixing , if you vary , then 's will be a cover for . Similarly, I can fix  and

vary   also.  So,  I  will  get  another  cover,  but   is  what?  A  compact  Hausdorff  space.

Compactness allows you a finite subcover.

So, you get  is an open cover for . I put here. Correspondingly, you have

finitely many ,  you can take the maximum of , as  range from  up to . That is my

, so that is inside , because  is a lattice. 

Now what happens to ? It follows the  inside  and  on the whole of , because 

is less than each , and this is  is the maximum. So,  is less than  on the whole of

. 

On the other end, if you go through the other inequality,   is bigger than   only on the

intersection of  's. If  it  is bigger than all  of them, then only   will  be bigger than the

maximum. Therefore, it should be true for all the   equal to   up to   which means that I

have  to  take  the  intersection.  If  I  take  intersection  of  ’s,  namely  the  intersection  of  the

corresponding 's and call it , on this ,  is bigger than . Is that clear? 

What are these 's. For each ,  is a neighborhood of . So, they cover the whole of , as 

ranges over . Therefore, I can get a finite sub cover of this one now say , say.

Correspondingly, I get , So, I take the minimum of ’s and call it . So, first maximum

and now minimum. So, this minimum is again an element of  because  are inside 

and  is a lattice.

Now, what happens?  is bigger than  on whole of  now, because  is bigger than each of

them it should be bigger than minimum of course, so, it will be valid for the entire of . On the

other hand, we also have  less than  for all   and hence it is less than the minimum of

these, namely  is less than . So, it follows that combine these two inequalities, 



now,  on  the  whole  of  .  So,  the  proof  is  over.  So,  it  is  like  a  min-max  principle  here,

compactness is heavily used, compactness of the domain space.
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So, now, let us complete the proof of the real version of Stone-Weierstrass. Let  be a compact

Hausdorff space,   be a closed subalgebra of   which separates points and contains a

non-zero constant. Then  is the entire . 

`Contains a non-zero constant' is the same thing as saying contains the subalgebra  itself. The

real numbers considered as constant functions, they form a subalgebra of . So, that is the

assumption here that this subalgebra is contained in . 

Note that given an arbitrary subalgebra, it  may not contain any non zero constant.  However,

even if one non-zero constant is there, then entire  will be there. 

So, this is the standard version of Stone-Weierstrass theorem. What we are going to prove is a

slight modification of this one, a slightly stronger version.
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And this is due to Gaddy, it is not very old; 2016. Without any extra effort we are going to prove

this one. So, I will help with this one. So, let   be a compact Hausdorff space,   be a closed

subalgebra of  which separates points. (So, I am not assuming that it contains non-zero

constant.) So, I have two different conclusions here.

Then   is   or, or what, or equal to the maximal ideal  , set of all   belonging to

 which vanish at   for a  unique point  .  So,  indeed,  this part  is  much more

revealing--what is happening in the subalgebra, than just studying them under the assumption

that there is non-zero constant.



Let us take this one for granted. Then the standard version follows automatically, because as

soon as there are non-zero constants it cannot be this  for any  that is all. There is a non-

zero constant that will not vanish at any point. So,  is much smaller after all, all those which

vanish at a point. 

So, this part will not occur. So it will to be always be the whole space  under the this

additional assumption.

So, what should we prove? If we assume that there are no non-zero constants in , then we must

be able to conclude that this  is nothing but  namely, we must find out such a point , a

unique point in . It sounds like a contraction happening, there is only one point such that all

elements of  vanish at that point. And  will be precisely equal to . So,  will be an ideal.

this is an ideal in . Indeed, it is a maximal ideal because the moment you take anything

which is not  at  you can produce a non-zero constant. Once you do that, the constant  will be

there in .  So,  will be the whole of the . So, let us go towards  proving this.
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The proof given here gives  a complete picture of Stone’s adaption of Weierstrass theorem. Of

course, this uses Weierstrass theorem just to show that  is there as soon as  is there in .
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If  is a singleton there is nothing to prove. What is ? It is just . So, any subalgebra of

 is either  or whole of . So, there is nothing to prove. So, there is no problem. So, we assume

that  has more than one point. By Lemma 5.31, we know that is  is a lattice. So, in order to

exploit this Lemma 5.33, namely the classification of subalgebra of  into 5 classes we have

to pay attention to the hypothesis that   separate points. Namely, we have come down to this

 as I explained, that is the only thing that is left out. We have done all other preparations. So,

let us do that.
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Let us first make some observations. All these, inside  now. Given  belongs to ,

we know that  is subalgebra of . And hence, we can apply this lemma. And we know what

 is either  or  or  or the diagonal or the whole of . 

(a)  Now,  suppose  .  What  does  it  mean?  Remember,   consists  of  pairs

 etc., therefore, this just means that  for all . That just means that  is

contained n . Similarly,  means that  is contained in .



(b) Now, the second observation is: for all  is already the diagonal. So, it is the entire

diagonal or . So, all these are elementary observations. But finally, you put all of them together

you have a wonderful result. 

(c) If finally,   separate points then there is at most one  such that  is contained inside .

See,  separates points. Suppose there are two points  such that  is contain inside  and

. What does it mean? All the elements of   vanish at both   and  . So,   and   cannot be

separated,  that is all.  So, the uniqueness part comes only by the assumption that   separates

points. 

(Refer Slide Time: 29:19)



So, now, consider the case when . As we have observed  is always  or . Suppose

for  some  ,  I  do not  know whether  it  is  there or  not,  suppose that  this occurs,  .

Automatically it implies that  for all . In this case,  is contained inside  is

the claim.  is contained in  is obvious.

If we show the  is contained inside  that would mean they are equal. And we are since the

uniqueness part we have already shown here. So, we would get the conclusion in the part 2 of the

theorem. 

So, let us prove that in this case,   is inside . So, this is achieved by showing that   is

inside . Since  separate points, from (c) above, we get   for all  . Also, from

(b), we get  is . Because if this were , that would that means  is also . Similarly,

 is .

Finally, from (c) again we also see that  ,  whenever   and  , and  .

Because these distinct points,  so there will be some  , for  which   and   will be

different. Since the two coordinates of all points in  are equal, this implies  is not equal to

. So it must be for whole of  

(Refer Slide Time: 32:21)



Now, let us look at any  . I want to show that it is inside  . If   is   then clearly

 will be inside  because everything is in . So, it is the full thing. If , or

, since  is  then also we see that  or , the other way around. 

If  is , the diagonal, then also we see that  is inside , so it is in . And

finally, the point  is  that is also . So, what we can conclude is that  is

inside , which was the criteria: namely, for each  must be in , that is the

description of . Thus, we have shown that   is contained in .
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Now, consider the case where  is not equal to  for any . We just finished this proof for the

case when there is one   for which   is  . That is first assumption. Now, we are in the

assumption that  is never  for any . Then what is the choice for ? It must be . (By the

way, this condition is satisfied if  contains a non-zero constant. So, this is just in passing we are

telling when this will satisfy. The earlier case does not occur if   contains a non-zero constant

that is all.) 

So, here we claim that this  itself is contained in . Combined with lemma 5.34 this will

complete the proof that .



 So, how do you show that  is contained in ?  

So, now, look at what we have in (a). Again I will just recall it. This says  is  implies 

contained . Similarly,   is in   implies   is contained in  . That is all I am using

here.  So,  from  this  it  follows  that  for  every   is  either   or  .  The

possibilities  or  do not occur. Since  separate points from (b) it follows that 

is  if only if  You see points  where , are in  but not in the diagonal .

Now given  belonging to , for  what we have,  is in , which is the

whole of . And if , then . So it is in  which is . 

So  verifies the condition of the lemma and hence is in . 

So, that completes the proof. 

So, I will just recall the important steps here. So, where was the definition of ?
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Because this   which was obviously larger than A in general. So, we have proved that   is

equal to . The description of . Given  is inside  if for all pairs  is in

, then  is inside . This is the simple description. So, this has been exploited here.

So, Stone-Weierstrass theorem for real valued continuous functions is proved now. A slightly

better version of that one has been proved here. So, next time we shall do the complex case as

well  as  some  other  extensions  wherein  we  do  not  assume   is  compact,  but  only  locally

compact. Thank you.


