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Welcome to NPTEL NOC on Point Set Topology Part II. So, today we will take Module 22

Stone-Weierstrass  theorems.  We  begin  with  the  classical  result  due  to  Weierstrass  on

approximating continuous functions defined on a closed interval by polynomial functions and

then go on to study some sweeping generalization of it, popularly known as Stone-Weierstrass

theorems.

Throughout this section,  will denote a compact Hausdorff space in the beginning and later on,

a locally compact Hausdorff space. That I will tell you again.  and  will denote

respectively the Banach algebra of all real (or respectively complex-valued continuous functions

on . And we take the supremum norm which makes sense because  is compact. The problem

of  approximating  elements  of   or   is  formulated  into  determining  when  a

particular subalgebra is dense.

So, density of certain thing just implies that when you take points in the closure, they are the

approximated functions from the set which is dense. So, that is the whole terminology.
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We begin with the classical result due to Weierstrass. Let   from  to  be any continuous

function. Then there exists a sequence of polynomials which uniformly converge to   on the

interval . See each term here is very important.  must be a closed interval. And you start

with a continuous function . You can approximate it by polynomial functions. That is the way

to remember it.  But what is exactly the meaning of approximating here? That a sequence of

polynomials uniformly converges to the function  on the closed interval .
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For simplicity of writing down the proof, I will assume that the interval is . But, there is no

loss of generality because what you can do is, you can make a linear change of variable in the

domain itself, namely, by taking   going to  . When  , this will be  . When

, this is . So, interval  will go to . So, this way you can change

the coordinates in the domain. 

If you have a polynomial in  and if you substitute  instead of , that will be again

a polynomial in . So, there is no loss of generality. So, from now onwards, we will look at the

closed interval . So, start with a continuous function defined on . So, I am assuming that

this is a real valued function here.



So, we may make a second assumption, viz.,   and   is also  . So, how do we do

justify  that?  By  a  linear  change  of  variable  in  the  codomain.  By  taking

. Look at this function  . At  , it is  . And

 is  minus the same thing and so that is again . 

So, this is again a linear change of coordinates. Your given polynomial is being added to a fixed

polynomial of degree one. So, right in the beginning we are making two such assumptions with

out any harm. The advantage of these assumption is that immediately we can extend   to the

whole of  continuously by defining it to be  outside of the interval .

Next,  for  each positive integer  , put   for all   such that  .  So,  

ranges from  to  . I am taking this function and then I am putting  outside this  . So,

look at this one. When  equal to  or , this term is , therefore,  is a continuous function on

the whole of  .  This   is  some positive constant  here,  what is  that constant? It  is  just  the

integral of the numerator,  from  to .

So, this dividing factor is some kind of normalizing factor here. So, it is reflected in this property

(20), namely.:   is, first of all non-negative,   is  , because it is a polynomial

function in . Finally, if you integrate this  from  to , the constant  in the denominator,

will come out, and cancel out with the integral of the numerator and the result is equal to . That

is why  is chosen in that way. These  are auxiliary functions that are going to help us in

the approximation.
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Now, immediately, I am going to define the sequence that we are interested in. Namely,  is

defined to be the intergal from  to  of . So, what I have done is:  is the given

continuous  function,  these   are  auxiliary  functions  which  I  have  defined  here,  and  I  am

convoluting  with these 's. This idea, all the way goes back to Euler. So, Weierstrass also has

used it.

Now, what I have to observe is that this formula will tell you that  is actually a function of 

first of all, because the variable  is getting integrated here. It is actually a polynomial function,

why? Because the integrand is a polynomial function of  and taking integral with respect to  is a

linear operator. Suppose this polynomial were a constant, after the integration, this will still be a



constant. If there is a -term here that  would have come out and get multiplied by the integral 

to  of . If there is a , the  will come out and then there is a function of  left out here.

So, when you expand  in terms of  and , it will be a polynomial in the two variables 

and , but under the integration with respect to , powers of  would come what is left out is some

other linear combination of the same powers of . So,  is actually a polynomial function in 

for each . 

Now we claim that this sequence  converges uniformly to  on . So, statement is very

easy  and  clear.  So,  only  thing  is  that  you  have  to  bring  these  ,  which  you  may  not

remember.  So, you may have  to  remember this  one.  In  fact,  there are  many other  auxiliary

functions also which will do this job, giving different sequences. There is no uniqueness here.

So, this is my personal choice you may say, but not exactly. I mean, many other people also used

it and at this time I will tell you that there are many proofs of the Weierstrass' theorem, none of

them go beyond the ideas  of Weierstrass,  in computational  simplicity. Something else,  some

other things, these alternative proofs may achieve, some different things. For example, I also like

the proof which is there in Rudin's book on Principles of Mathematical Analysis. So, you can

have a look at that also. 

So, now, we have to prove that  converges to  uniformly. So, first observation is:

For all , the interval  is contained inside the interval . If  is between 

and , for example, suppose , then this is , so, it contains . And if , it will be

, so that also contains  . That is because the interval   is of length  and you are

shifting it a little bit.  

Next observe that  is   outside . Therefore, when you take the integral from  to

 of  times something, since  is  outside this interval , it is as if we are taking

the integration from  to . So, that is . So I can rewrite  as an integral from  to

 of the same function.

Now, you will see the advantage of writing this integral like this, namely, substitute ,

typical  thing  to  do  when  you  are  doing  convolution,  interchanging  the  variables  here.  So,

substitute  ,  what  happens  to  ?   becomes  .  And   becomes  .  So,  what



happens  here  is  that   gets  a  new  form,  namely  it  will  be  integral   to   of

.  is this, of course, and . So, you have to interchange the

lower and upper limits of the integral.  So, this  becomes  and  becomes . So, that is

why you get  and , along with the sign here  is . 

Now, why I am doing all this? The point is now, there is symmetry, the   remember was a

symmetric function. So, this property of  is positive, and  for all  in the

interval. So, also the integral of  to  of  is . So, these properties can be useful now in this

form. So, you will see, each of these statements will be useful now. So, that is all computational

now, but it is interesting and quite entertaining.
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The simplest thing is the Bernoulli inequality: for , we always have .

When you take the binomial expansion, the first two terms are  and . You can ignore the

rest of the terms, if you put inequality like this. This is easy to prove, there are several ways of

proving this, this just an elementary calculus.

And hence,   which is integral   to   of   is nothing but, see by symmetry, this

integral is equal to twice the integral from  to  of , the same function, but that is

now greater than or equal to twice integral of the same thing from  only upto .



This function is smaller than this function, they are all both of them positive in this interval

provided you take only up till here, there are other terms which you can ignore because you are

taking only the inequality, bigger than equal to this one. But now, you integrate, what you get is

this is bigger than or equal to  and that itself is bigger than .

There are heavy, liberal, inequalities here, no economy is employed. You may be able to prove

that  in many other ways, I do not care, I want one proof. So, , this all I

wanted.
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Next thing is: for every  between  and , we have . Remember what was

.  was , this  we have estimated is bigger than . Therefore, I can

ignore this now. I can simplify, it becomes it comes in the numerator here 

provided .

So, in this interval   this inequality holds. Now, recall the geometric expansion ,

the whole square is nothing but  to  of , (there is a square term here that is why,

). It is a power series in . This is valid for , this is the geometric series. This

implies that if you take  term here, whatever it is, it must tend to  as  tends to .

Limit as  tends to infinity of  is , whenever . This in turn implies, of course,

you can change  to , by Sandwich theorem that the limit of  is . Upon taking square

root and putting , we get that limit of  is . The conclusion is that 

converges  uniformly to   in  any interval   for  all  .  This  is  one  of  the purpose  for

choosing these 's.   

If you can choose something simpler you will get a simpler profile no problem. So, what I have

what is that you see this right-hand side here tends to   as   tends to infinity. Provided this is

always true,  now, if you use   then we can pass on to   here.  So, let us see what

happens.
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Now, by uniform continuity of ,  is continuous and we are interested only in the closed interval

 So,  therefore,  it  is  uniformly continuous.  Given   there will  be a  ,  I  can

always just choose this  to be less than  such that  , whenever ,

both  and  are inside . I have written inside . Clearly, we have this inside  of course. but

then because outside  we have extended  to be  remember that. Uniform continuity holds

over the whole of . First we get it for the closed interval  but on the rest of the space the

function is .  

Now,  has been chosen and this statement was true for any  between  and .
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So, now, we will use this data and combine all the various properties (20) (21) etc. What is (20)?

Let us just recall,  (20) is I  told you gives these are 3 properties here symmetry of  ,  non-

negativity and integral . And (21) is a formula for . (22) is the new formula after change

of variables. Then (23) is  being dominated by this term which converges to , that is (24).

So, if we combine all these things, what you get is as estimate for  . We have to

estimate this one, we have to show that this is less than , irrespective of what  we take, provided

 is sufficiently large.

So,  I am just writing down the formula for  and using the fact that  integral is .

So,  I  can  multiply  by   which  is  a  constant  as  far  as  the  integration  is  concerned.  So,

 is . This  integral is just  because integral of  is .

So, that has been used here. So, there is nothing else here. 

Next, the modulus sign is taken in the inside the integral, modulus of integral is less than or equal

to  integral  of  the  modulus  is  the  elementary  property  of  Riemann  integral  of  real  valued

functions. When you take the modulus inside what you get is   modulus of the

whole thing into ,  being non-negative, comes out of the modulus sign. All this  is

less  than  or  equal  to  other  input,  because  I  cannot  put  equality  here  because  this  is  only

inequality. 



Now, this integral from  to , I am breaking it into integral over threee parts: first one is  to

, next is,   to  and the last one is   to  of the same function. So, write down these three

integrals.

Now, in the first interval , what is happening? This integrand will be less than or equal

to , where  is a constant chosen such that . So, this is a general bound, so I am

using that. So, , the modulus of this difference is less than or equal to sum of the

moduli of each of them, less than or equal to . Then mutiplies by the integral of  as it

is, I do not know what it is, first I have got this much.

In the second term, I am using the fact that the same term is less than , since  ranges between

 and . So, this is where I have used this one now. So, this , this is less than

or equal to  and that comes out of the intergal sign and integral of  remains. In the

the third part, again I am estimating this part as in the first part. This is less than or equal to 

times integral of  to  of . So, different estimates in 3 different parts.

Now, what happens? Combining the first  and third term, the sum is less than or equal to  4

. So, this is where I used the fact that  is dominated by this term. This term is

also dominated by that. And  to  and  to , these two integrals are the same. So, I can bring

them together. So,  times this one, this is where the symmetry,  is  is used, the

symmetry is used. The middle term is less than or equal to  times the integral, this integral is

smaller than the integral  to plus 1, which is . So middle term is also less than .

So, what we have shown is  is less than equal to this one,  has come here. If you

choose   sufficiently large, this can be made less than  ,   is less than . So, in the

choice of ,  is not involved. Sufficiently large , that will depend upon your  only because this

term goes to , as  goes to infinity. 

So, this proves Weierstrass's theorem.
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Let us take one small step before closing up today, towards a more general results  now. For

generalizations, the only thing that we use from above classical result is the following corollary,

which can be proved in different ways. You do not have to prove Weierstrass theorem fully. So,

what is the corollary, corollary is:

Let  be a closed subalgebra of .

Remember subalgebra etc we have defined in the part I. Closed means that there is a topology on

 and closeness is taken with respect to that topology. This   is an algebra, so it is a

closed subalgebra of . If  is inside , then  is inside . 

So this is what we want to prove. Why this so so?  Here is a proof.
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It  is  directly  by  Weierstrass  approximation.  Given   positive,  choose  a  polynomial  ,  a

polynomial means, with real coefficients everything so far,  is in  such that the function 

is approximated by , namely, , on the entire interval, this time the interval is

 to , I am taking. Remember the Weierstrass theorem was proved for all closed intervals.

Let this polynomial   look like  . Put  . This constant

term  is disturbing me, so I will throw away that and let us look at the rest of the terms in ,

call it , equal to . Then , why, because you put , here in the above

inequality, this is just .



It follows that . This  is missing, that will contribute another ; so this is . That

is why I have chosen here   in the beginning. So, now what I have got is a polynomial  

without a constant term just like  here, and  is approximated by this polynomial. Now, given

any , any element of , but first of all, we may assume that  is not the zero element. 

So, what we want to prove is that  belongs to . If  is zero function  is also  function there

is no nothing to prove. So, we may assume  is not zero identically, so that its norm is also not

zero. Now, you divide by the norm, take . Now, look at . It is inside .

Why? Because I have just divided by a scalar function. So, subalgebras are vector subspaces

after  all.  Since   is  a  subalgebra,  it  follows  that  if  I  take  a  polynomial  in   such  as

, that will be also inside. So, in particular, if you take  , see the

constant term is missing here that is important, that is also in A. 

Moreover, now, look at  , norm of this one. See, remember that Weierstrass theorem

was only for continuous functions defined on a closed interval. Now, we have gone into arbitrary

spaces,  but now, the image of   is in the interval  .  So, everything is happening in the

image.

So,  where is it taking values,  . So, it is like  itself being a variable that is precisely

what I am thinking,  is like a variable , , so that is the function. The , the

norm of that, this is same thing as supremum over all  of all , take the

modulus of the difference and take the supremum. That is the definition of the supremum norm.

But this supremum norm is less than of equal to the supremum over all  varying between ,

of  .  As   varies  over   simply varies  in  the interval  .  So, I  take  

between , , you take the supremum of all these elements. So, this may be larger

because all   inside   may not look like   for  some  . So, this is the larger set, the

supremum over a larger set is larger. So, this is less than equal to this one.

But this is the same thing as norm of . See, if you do not like this symbol you should

write something like   and then this term here is the norm of  . So that norm of

 is less than . So, , that is what we have got now.



This just means that given every , there is a  like this.  is an element of  for all . That

means  is in the , but the  is  itself because we have assumed that  is closed. Therefore,

 which is a scalar multiple of  will be also inside . Once  is inside ,  will be also

inside  but that is .
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Next, we consider an elementary algebraic result. Namely, instead of studying the big algebra

 we just study the algebra . Think of  as a ring,  has a ring structure. So,

what  is  that  ring  structure?  I  am  telling  you:   is  just  coordinatewise

multiplication .

So, this is not like multiplication of complex numbers which is more complicated. So, this is the

algebra, which is a product of  and . Look at this algebra, any closed subalgebra of  has

to be one of the following: (i),  (ii),  (iii),  (iv) or (v).  It  can be the   subalgebra.   It can be

. It can be . It can be the diagonal , or it can be the whole of . So, these

are the only five possibilities of subalgebras of .

Why? Of course, 0 is there. Of course,  is also there. Similarly, the other three are subalgebras

that  is  very  easy  to  verify.  But  why they  are the  only  ones?  That  is  also easy.  Because,  a

subalgebra is, first of all, a vector subspace, vector subspace of 2-dimensional vector space, (

 is 2-dimensional vector space over ) has to be either 0-dimensional, 1-dimensional or 2-



dimensional, 0 and 2 are taken care of in  (i) and (v).  The rest correspond to 1-dimensional

subspaces.

How do you show that there are only these three 1-dimensional subalgebras? A 1-dimensional

subspace is spanned by a single vector. If that vector is of this form , then it will be this one.

Instead if it is of the form  then it will be of this. In the general case, I want to say that the

generator is of the form . Why this is true? So, this is one thing which bothers us. So, you

have to do a little more algebra than vector subspaces. Otherwise, you are classifying all vector

subspaces, when all the lines passing through origin had to be taken. Other lines do not come

here is what you have to see.
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So, we will  see that,  that will  be end of it.  So, take   belonging to   which is  nonzero

element of this subalgebra. So, I am looking at this  -dimensional case, but it is a subalgebra.

Therefore,   square  must  be  also  inside  .  But   square  is  by  definition  is

. This must be also inside this -dimensional space. So, it must be

a scalar multiple of .

Let  be some real number, so that  is . The case when  correspond to

 or . So, let us forget about that. Look at the other cases when  and  are non-

zero.  and  is non-zero implies . Similarly,  imply . So, we have got

So, therefore, this  is nothing but a diagonal of slope 1. 

So,  that is the lemma here. So, there are only 5 sub algebras. We will see that the entire thing

will be reduced to this 2-dimensional case, the proof of Stone-Weierstrass theorem that we are

going to study. So, that we will do next time. Thank you.


