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Hello, welcome to module 21 of NPTEL Point-Set-Topology course, part II. Today's topic is

Stone-Cech  compactification.  Having  studied  the  minimal  compactifications  namely  the

Alexandroff's compactifications, we shall now study the compactification that is maximal. 

The idea is to embed the given space in a large compact space and then take the closure of the

image of this  embedding.  The large number of  continuous maps of a  completely regular

space into the closed interval   combined with the Tychonoff's theorem on product of

compact spaces is the key in obtaining this maximal compactification which goes under the

name Stone-cech compactification. You should remember that all these we are doing only for

Hausdroff spaces. 
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So, our first lemma which you can call Tychonoff's embedding lemma is the following: Start

with a  topological  space,  any  topological  space  and  any  family  of  continuous functions,

which I will  denote by  . The domain of each function   always  , but co-domain may

change from function to function so, I denote it  with  . So, each member of   is a

continuous function from  to ; that is all. 

(i) Let the evaluation map  from  into the product of all the spaces 's, as  ranges over 

, be defined as follows: for each , the f-coordinate of  equal to . (Remember

that the points of the product space are completely described by describing their coordinates.)

The  is continuous.

The second part (ii): Suppose the family  separates points of . (This just means that if you

are given two distinct points   and   inside  , then there exists a function   inside this

family  such that  is not equal to , that  and  have been separated by  that is the

whole idea.) So, if that condition is satisfied then the evaluation map  (defined as in (i)) is

injective. This is the second part. 

The third statement (iii): Suppose the family   separates points and closed sets. (That just

mans that given a closed set   in   and a point   not in the closed set, there must be a

function  inside  such that  is not inside the closure of . See  is a closed set but

 may not be a closed set, you take the closure of  in , this  must be outside this

closure. That is the meaning of this separation). Then   is an open mapping of   onto its

image . 



Now,  an  open  mapping  injective  map  will  be  an  embedding.  That  is  why  the  name

embedding in the lemma has come. So there are three distinct things here. So, one by one let

us have a proof which are all straight forward. 
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The first thing is continuity of the function . Where is it? It is on some space   into the

product space. A function into a product space, we know, is continuous if and only if all its

coordinate functions are continuous, viz., composed with each projection map is continuous. 

Let us take this  to be the projection map from the product  to . Then  operating

upon any point  is nothing but  by definition of , . So, you have to put

 here. What does that mean? That  is the function  itself. That  is continuous

because we are taking all functions inside this   to be continuous functions. So, this  just

completes a proof that  itself is continuous. 



The second part (ii). Start with two points  and  not equal to each other inside . As soon

as you have that, there will be some function  inside  such that . So, that is the

meaning of the property that  separates points of . that is the condition that we are using.

Remember  is nothing but the -coordinate of  and  is the -coordinate of .

We know that these two are different, . So, one of the coordinates of the points

 and   are  different.  Therefore,   is  not  equal  to  .  So,  statement  (ii)  is

proved.  
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Now, the third statement (iii). So, what we have to show? We have to show that starting with

an open subset  of  is open inside  is what we have to show. Where is ?

 is a subspace of the product space. So, how do we ensure that given some subset is an

open subset in the subspace? If you get an open subset of the product space and then you

intersect it with the subspace, and show that that intersection with  is given set. 

Or it is enough to show that given any point , there exists an open set  in the whole

product space   running inside   such  that  this way we have the property  that  

belongs to  which is contained in .

So, let us see how to construct this . For this, all that I do is choose  such that  is not in

the closure of . Remember  is an open set. So its complement is closed in  and does

not contain . By condition in (iii) such a function  exists. 

Now you take  equal to . Remember  is a subset of , because  is a

map from  to . So, if I take the complement of the closure that is an open subset of .

Therefore  inverse of that will be an open subset and that is what I am taking to be . 

So, this   will be an open subset of now the entire product space because   is after all a

projection map from the entire product space into  . So, this   is open. Obviously  

belongs to  because  and  is not in the closure of .  



Now suppose   is any other point such that   is inside  . That is   is a point of

. Then what happens?  is nothing but  is in the complement of the

closure of . So, it is in . That means that  in not inside  which is same

thing saying that  is in . Therefore,  is contained inside . So, that shows that

 is  open  inside  .  So,  lemma  is  proved.  Now,  we  can  read  some  important

conclusions here. The first one, I am calling Tychonoff's embedding theorem. 

I  start  with  a  Tychonoff  space.  Tychonoff  space  means what?  Completely  regular  and a

Hausdorff  or   space.  So,  start  with  a  Tychonoff  space  and let   be  the  set  of  all

continuous maps   from  to  . So, here I am have a specific choice of these   in the

lemma. So,  is  the entire space of all continuous functions from  to . Then look

at the evaluation map  from  to this product space , copies of the closed interval

  taken   times.  (For each member of  ,  take a copy of   and take the

product. Earlier in the lemma, we had arbitrary space . Now each  is equal to the closed

interval . So, that is the special case of this previous lemma.) This  is an embedding. 

That is the statement which is an immediate consequence of lemma; all that you have to show

is that the condition (ii) and (iii) are automatically satisfied, if X is a Tychonoff space. A

Tychonoff space is Hausdorff space then we know that each point is closed and any closed

set and point outside are separated by  because of complete regularity.

So, (i) and (iii)  will be automatically satisfied. Of course,  , the evaluation map is always

continuous. For that no extra assumption on this family  is necessary. So, conditions in (ii)

and (iii) come only because we have assumed  is a Tychonoff space. So, what we already

saw in the final conclusion is that for every Tychonoff space ,  is the evaluation map from

 to the product of   taken   times namely, the space of all continuous functions

into  is an embedding. 
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Now we can make the definition of this Stone-Cech compactification. Look at any Tychonoff

space ,  take  and the evaluation map  from  to . Then the pair 

(closure  taken  in  ),  is  called  the  Stone-Cech  compactification  of  the  Tychonoff

space . 

Of course, the product space is compact since every closed interval is compact. That is why

 will be compact. Each factor in the product is also a Hausdorff space and hence the

product  is  a  Hausdorff  space.  So,  the  subspace   is  also  Hausdorff.  By  the  very

definition,  is dense in . So, these are Hausdorff compactificatios. Now  can be

identified with  via the embedding , then this  can be thought of as an extension

of the space  itself. That is the way to think about compactificatios. However, while dealing

with technical aspects, elaborate definition is needed and so we just do not forget the actual

embedding . For instance, if the embedding is chosen differently by chance, then we do not

call it Stone-Cech compactification. 

You shall now establish a certain canonical property of Stone-Cech compactification. I will

explain the use of the word `canonical' in this context, a little bit later. As a preparatory result,

we  have  this  lemma.  This  itself  partly  explains  the  word  `canonical'  implictly.  So,  pay

attention to this lemma. 

Let   be any topological space and theta from   to   be any set  map, just set theoretic

functions. map, there is no topology here.  is a topological space. 



Then consider the function  from the  to , i.e., product of copies of  taken  times

once and  times next. So, what is ? Look at any element of , that is a function from 

to . Pre-compose it with  to get a function from  to . Thus .

This map   itself  is  a continuous function where this   and   are given the product

topology  and  the  product  topology.  Note  that   is  any  function,  there  is  no  continuity

condition, there is no topology there. But the domain and codomain of   are topological

spaces and  is continuous. 

This statement looks somewhat strange. But the proof is just one line here. Because what you

have to do to prove the continuity of a function into a product space? You have to check the

continuity of the function composed with each coordinate function. That is all.
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So, that we have to so here is a diagrammatic representation of  is this function  here. For

each function from  from  to , these are the set theoretic functions being elements of ,

you compose it with  then  is a function from  to . That is the definition of . 

All that I have to do is, for each point , to show that  is continuous. These  are

coordinate projections.  Operated on any  , it  is by the very definition, it  is  nothing  .

Therefore,  .  This  just  means  that   is

nothing  but   a  coordinate  projection  from  the  product  space  .  All  coordinate

projection are continuous. So, that completes the proof that  is continuous. 
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Now, I am making the statement of theorem 5.23. Let  and  be any two Tychonoff spaces,

and  and  be short notations for our standard Stone-Cech compactifications of 

and   respectively.  (But  just  to  be  careful,  I  am taking   here  so that  there  is  no

confusion since for both we have the evaluation maps, which are obviously not the same

maps, their domains and codomains are both different. 

Now, given any map  from  to , there is a unique map  from  to  such

that (this   is a new function, the existence and the uniqueness is asserted)   has the

following property, viz.,  that  is equal to . So, look at the diagram.  is here, 

is  going  into   here,   is  going  into   there.  These  are  two  Stone-Cech

compactifications. There will be a continuous function sf here, which makes this diagram

commutative. 

There may be many such functions? No, there is only one such map like this, a unique map

. That is conclusion of the first part. The second part says: In particular, if   itself is

compact and Hausdroff space, we get a unique map, this time denoted by  from  to 

which  is  an extension  of  .  Again extension means  what,  now   is  equal  to  .  The

function is from of  to . You restrict it to the subspace , which is the copy of 

that is the function f itself. So, that is why this  is called an extension that is all. So that is

the second part here. 

I will explain this one once we complete the proof of the first part. 
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Let us start with the uniqueness part of . Suppose you have any topological space  and

any Hausdroff space  and two continuous function  from  into , such that if you

look at the set of all  belonging to  with , that set is always a closed subset of

. So, that is a property of the Hausdroffness of  , of the co-domain. So, this is one thing

which we have used several times. So, here also we are using it. I am going to use it for the

uniqueness part. I am going to use the fact that the Stone-Cech compactification  is a

Hausdroff space. So, let us apply this conclusion here to  and  two functions from 

to , such that  is equal to . Both of them are what? By the very definition

and by the very condition they must be equal to .

Therefore,  . That just means that set of all points of  , let us call it  ,

wherein  which is a closed subset contains the space  is contained



is this closed set that means its closure is also contained the this closed set. Some subset is

contained in a closed set implies the closure of it is also contained there. So, what is the

meaning of that?  g  that is all. So, that is the proof of the uniqueness.

Now, I have to show the existence of . Because of uniqueness, we can write a notation

for it such as  stands for Stone-Cech compactification, for every continuous function 

from  to  . So, let us go to the existence part. Given a function   from  to  , first we

define   from   to   as  in the lemma.  Remember   denotes  all  continuous

functions from   into  . Similarly,   denotes all continuous functions from  into

. Starting with a function  from  to , you pre-composite it with  to get a function

from  to . So  is just . 

Next  thing  is  to  take  one  more  composition  here.  Now  to   from  the  product  space

 into the product space , just the way we have defined  in the lemma. So,

 is replaced by a  here. Here is a diagram which shows the two stage construction of .

Starting with  you composite it with  to get . So the codomain is always  here.

Then apply the same construction for  : starting with any function  here, you compose it

with  to get . This  is now from the set of all functions from  to , namely the

product  space,   raised  to   to  ,  these  are  both  products.  This    which  is

continuous from the statement of this lemma 5.22. 
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All  that  I  have  to  do  now  is  that  this  same   will  restrict  itself  to  the  Stone-Cech

compactifications  and  respectively, inside these product spaces. So, that is the next step

we want to do. 
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In the following picture, you start with  here and you have got  here,  is sitting here

 is sitting here. These are the Stone-Cech compactifications of  and  respectively.

First I want to show that all the solid arrows form a commutative diagram, viz.,  the outer-

most ones, excluding the two dotted arrows in the figure. 

Once you have this commutative diagram, it follows that   of   goes inside  .

That  would automatically implies, by continuity of   that   of closure of   goes

inside closure of . Therefore, the entire diagram including the two dotted arrows will be

commutative. So, automatically these dotted arrows are nothing but just the restrictions of 

to the corresponding domains. If  I take   to be the restriction of   to  , then it

follows that  is equal to . 
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So, let show that for each . Remember that  (and respectively

) is the evaluation map from   into the product space   (  respectively.) This

claim is the same thing as, by the definition of  operating upon  is equal to

 operating upon , for . So, we have to show that this latter thing is equal

to  operating upon . But this is the same thing as proving that  operating upon

 is the same as , which is obvious, since  is another evaluation map. 
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So, I repeat now. Having proved that this solid diagram is commutative, all that I have to

observe is that  is contained inside . That is purely a set theoretic observation.

Any point of   is nothing but one coming from . The evaluation maps on either side

have been  factored through the Stone-Cech compatifications,  which are subspaces  of  the

corresponding codomains.  So that is purely an observation. Thus  makes sense and has

the required properties. 

The  last  part  remember  what  is  the  last  part  here?  In  particular  when   is  a  compact

Hausdroff  space,  what  is  ?   will  be  a  compact  subset  of  a  Hausdroff  space.

Therefore, it is closed already. So,  will be equal to  which is a copy of . So,

the Stone-Cech compactification of a compact space Hausdorff space is itself. `Itself' means

that  is being identified with  via the homeomorphism .  



So, the map  is actually from  to  itself. This  is just  itself. When you say

 itself, you are identifying  with , and treating  as the identity map. That is why

you have a simpler notation here. If you write  equal to  here, treat it as a function into

, then what you have is that   which is nothing but   is just   because   is

treated as an identity map. 

So, second part just follows because compact Hausdroff space has itself as its Stone-Cech

compactification. That is all. 
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So this is obtained very easily all that you have to say  , it is   or if you do not

want to do all that you think of  is identity map with inclusion map, that is all. 
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This  theorem  has  many  interpretations.  So,  Stone-Cech  compactification  is  the  maximal

compactification among all Hausdroff compactifications of a Tychonoff space. Only when

we have Tychonoff  space,  we can talk about Stone-Cech compactification. And that  is  a

Hausdroff compactification. 

Look at all other Hausdroff compactifications, this will be larger than all of them. Remember,

we have a partial ordering defined on all compactification of a given space. If we restrict to

the collection of only Hausdroff compactifications, amongst all of them, Stone-Cech is the

largest. If  is a Hausdroff compactification of a Tychonoff space , then we just take 

as in the last part of the previuos theorem. 

Remember that any continuous function  from  into a compact Hausdorff space  admits

an extension  from  to . This  is precisely . That is precisely the meaning that

this compactification is bigger than that compactification,   is bigger than  

So, there is just a restatement of the previous second part of the previous theorem you may

say. But that has more content than this one, this is just a consequence of that theorem. 
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So, I make a remark here. In theorem 5.23, it is easy to check that if  is  itself and  from

 to  is identity map then this  is nothing but the identity map of  to . The

second comment: if   is another Tychonoff space,   from   to   another continuous map

then you can look at . The map  will be from where to where? From  to , so

 nothing but  from  to . So, in between you have this , so,



 to  to , you have . So, I will leave verification of this to you. It is

just purely set theoretic verification to you. 

The importance of these two properties is that these two properties actually have a very good

name.  They  are  called  canonical  properties  or  functoriality  properties.  The  adjective

`canonical' that we are using for the map  is precisely for this reason.
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Finally,  we  shall  end  this  topic  today  by  giving  a  characterization  of  Stone-Cech

compactification.  You  can  also  call  this  the  universal  property  of  the  Stone-Cech

Compacgtification.  For a Tychonoff  space  , Stone-Cech compactification   is

characterized by the following property :  given any continuous function  from  to the

closed interval   there is  a  unique continuous function   from   to   which

extends . Again `extends ' in the sense that  is . 

In  the  theorem,  we  have  prove  that  the  Stone-Cech  compactification  has  this  stronger

property, viz.,  instead of taking  we could take any compact space. That is the second

part of previous theorem. In the characterization, we are restricting it to only  , the co-

domain is always just . So, that is the beauty of this characterization.

The characterization has its own use. Often, you do not have to use the fact that   is

sitting in that product space. Remember that  is taken as a subspace of certain product

space. You do not have to use that product structure or anything you can just use this property

. So that will be automatically give you many properties of Stone-Cech compactification. 



Take any compactification of   of a Tychonoff space  , which has this property  ; it

has to be equivalent to Stone-Cech compactification. That is the whole idea. So, proof is not

all that difficult. 
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First of all, the Stone-Cech compactification itself has this property. As a special case of 5.23

which I have just told you, by taking . Now, I want to prove the converse. Suppose

 is some Hausdroff compactification of , which has the above mentioned property . 

Applying 5.24, we get a continuous tau from  to   such that  . So, this just

means that  is bigger than or equal to . You have already proved it. I am just

repeating this part. Stone-Cech compactification is the largest. So, what we have to prove is

this   is all the larger than  . Then because all are Hausdorff spaces, as seen

before, the two will be equivalent. So, it remains to prove that  is bigger than equal to

 which  is  the  same  as  finding  a  map  tau  prime  from   to   such  that

. So, we have to reverse the arrows here. This also not very difficult, but it  is

something new. So that is why I have to give you a complete proof. 
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So, what is the assumption on ? It satisfies the said property . Therefore, for each 

inside , what is ? Space of all continuous functions from  to the closed interval

, let us take  from  to , the unique map such as . So, this is the property . 

Once you have these s, define  from  to the product space  by the formula 

is that element which has its  -th coordinate equal to  . So, the   is defined by this

equation. So that defines a point here for each  . I want to say that first  of all  this is  

continuous.  Why?  Because  its  -th  coordinate  is  .  So,  each  coordinate  function  is

continuous. Therefore, the function  is continuous. 

So, continuity of this function is fine. Moreover, take  and look at . What is it?

Operating upon  , it  is   is  nothing but  .  But,  what is  ? It  is   by

definition of evaluation map. This is true for every . Therefore,  is nothing but .

So that  is  true for  every  .  It  just  means that   is  .  In  particular,  this  implies that

 is contained inside  . Therefore,   (what is  ?  )  is the same as

. So that is contained inside the closure of , closure can be pulled out. So,

but that is contained in . 

So, tau prime factors through . Just starting with a map from  to , we show

that it is actually taking values inside the Stone-Cech compactification. So, take that map tau

prime as a function from  into . So, we have already shown that . Of course

that completes the proof of the characterization also. 
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So, I will end this talk today with a general remark now. There are many many interesting

compactifications  depending on the kind of spaces  and the kind of problems that  we are

studying, the problems whatever you are interested in. So, for each kind of problems, there

may be some compactifications to consider, so as to simplify the problem and try to get the

answers and then come back and so on. That is the game. 

Here we mentioned a few of them, other than the Alexandroff's one point compactification

and Stone-Cech compactification. The smallest one and the largest ones we have discussed.

So, Wallman compactification is another important one which is much more general  than

these two compactification. It works for all  spaces. Stone-Cech compactification is one of

the most popular compactifications. But, Wallman compactification is also equally popular.

That is what I wanted to say. The study of this will be taken in a later chapter. 

 

In the study of manifolds you may come across with problems of putting a boundary to the

manifold. Since you do not know much about manifolds I cannot explain this more than this.

This is only for information, which if you remember this is what was told to you, that will

suffice. So, `putting a boundary' is actually some kind of a compactification. A further special

case is the so called space-time compactification which is interesting in the relativity theory.

Another point of view of this takes you to the study of `ends'. For example, you will see that

the real number system, the real line has two ends, whereas the complex plane has only one

end. I do not want to elaborate anything more than that here. These are all, you know, part

and parcel of various types of compactifications. 



In algebraic geometry, you come across with algebraic compactifications. Projective spaces

are standard examples an algebraic compactification of the affine space .  has may more

algebraic compactifications. 

While  studying  topological  groups,  you  may  come  across  what  is  called  Bohr

compactification. Maybe when you compactify you would like retain the topological group

structure itself there see the group structure. That should also extend and so on. So, this is

related to the study of what is called almost periodic functions. So, when you are studying

that you will come across Bohr compactifications. With these many little bit of remarks, let

us end today's talk. So, next time we will take up a different topic. Thank you.


