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Welcome  to  NPTEL  NOC  an  introductory  course  on  Points  Set  Topology  Part  II.  We

continue our study of compactifications. As a special topic today we will study proper maps

which are very closely related to,  hand in glove with, compactifications. The phenomenon

that  we witnessed  in  the  above  example  is  indeed  a  typical  one.  So,  let  us  introduce  a

definition. 

A continuous function  from  to  is called proper if for each compact subset  of , we

have  is compact. For example, quite often in a locally compact space, such as  and

so on, if you have a finite-to-one map, not always, okay, a finite-to-one map will be compact.

Infinite to one map may not be proper. I am talking about proper map. So, proper maps are a

kind of tools to beat the non-compactness of domain. Study of continuous functions from one

non-compact space to another non-compact space often involves proper maps. 

So,  I  repeat  the  definition.  It  just  says  that  inverse  image of  a  compact  set  is  compact.

Remember if you have a continuous function image of a compact set is compact. That comes

freely. Now, we want inverse image of compact sets to be compact. So, you may say okay

you are talking about  being a homeomorphism?  No,  can be an infinite- to- one map also,

no problem, but I want inverse image of a compact set to be compact. I am not assuming that



is  one oneness.  Inverse  of   as a  function may not  exist,  but  inverse of  a  subset  of  the

codomain under  makes sense. That is all we are using here.
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So, here is a theorem, which explains why we study the proper maps in the context of one

point compactifications.

Let   and   be  any  two  locally  compact  Hausdorff  spaces.  Let   from   to   be  a

continuous function. Then the function   from   to   defined by   is   (I  am

denoting the two extra points by   and   respectively) and   is equal to   for all

, (i.e.,   is an extension of ) that function is continuous if and only if   is a proper

map. 

So, this is the motivation of defining and studying properness here. Remember what we did

in the example earlier, for the function  which was defined from  minus the north pole

into  sitting inside its one-point compactification on the other side.   was extended to

the whole of   by taking the north pole to .

So, that was the model, so the extension became continuous. There we could verify it by just

purely  looking  at  the  inverse  image  of  neighbourhoods  of  the  infinity  there,  that  is  all.

(Indeed, this was left as an exercise.) So, here, we have to verify the continuity by pure logic,

there is no geometry here, merely follow the definitions of these  and , and the proper

map.  This  is  also not  difficult,  let  us  go through this.  (In  fact,  once you prove this,  the

exercise that you are suppose to do i the above example will also get done!)
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Assume that  is continuous. If  is a compact subset of , then  is closed inside  also,

because it  is subspace of   and   is Hausdorff. And hence  ( ) will be a closed

subset of  . But closed subsets of compact space are compact. But you have   is

nothing but , because  is a subset of  and  sends  to . 

So, we have proved that inverse image of every compact subset of   is compact inside  

under . That is   is a proper map. Now, let us prove the converse. If   is a proper map to

show that  is continued at , this  goes to . (Elsewhere it is continuous, because it is

an extension of .)

So,  all  that  I  have  to  do  is  take  neighborhoods  of   show  that   inverse  of  such

neighborhoods  are  open  inside  .  That  is  what  you  must  show.  So,  how  are  the

neighborhoods of infinity prime described? They are nothing but  where  is a closed

and compact subset of . You take a compact subset of , take the complement of that in 

that is an open neighborhood of  by definition.

So, I have to show that inverse image of such a set is open in . But just now, we have seen

that  is nothing but  setminus . So, its complement in  is just f

. So, this is same thing as saying that  is closed and compact subset of . 

So, that is an open neighborhood by definition of infinity here in . Since we have assumed

that   is  compact  whenever   is  compact,  this  will  be  a  neighborhood.  So,



neighborhoods of   inverse image are neighborhoods of   inside . This completes the

proof.
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Because of the importance of proper maps in several areas of mathematics, we shall study

them  a  little  more.  We  have  introduced  the  properness  via  this  wonderful  property  of

Alexandroff's compactification. But the proper maps have their own proper life other than

just Alexandroff's compactifications.
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Let us do a little more of this one. Indeed,  the concept of proper maps appropriately adopted

in algebraic geometry, is very important because there you do not have Hausdorffness at all.



So, all these Alexandroff's compactifications do not make sense, but proper maps do make

sense.

So, let us study them a little more. Start with any continuous function f of topological spaces;

 from  to  is called universally closed if for every other topological space , no matter

what it  is,  ,  from   to   is a closed mapping. See clearly   is  a

continuous function. We wan it to be a closed mapping, which means that closed subsets of

 are taken to closed subset of . So, such a function is called universally closed.

More generally, with reference to taking product with  etc., if a closed subset goes to closed

subset by a continuous function such a function is called a closed map. For all   and for a

product like this, it is closed, means universally closed; that is the definition.
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By taking  to be the singleton space, it follows that a universally closed map is a closed map

also. There is no problem. It is fairly obvious that the converse will not be true in general.

You look at examples on your own you can easily find some. However, this will immediately

follow from what we are going to prove soon. Therefore, you do not have to worry.  The

following lemma is a step in the right direction.
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Take any continuous function  from  to , where  is compact and  is Hausdorff. Then

that function  is universally closed. Now, it must have rang a bell inside you, right from part

I, we have been studying this kind of situation. We have proved that a continuous bijection

from a compact space to a Hausdorff space is a homeomorphism. Then we also prove that

any surjective map from a compact space to Hausdorff space is a quotient map. This is just

one more step.

Now, the secret is open. This is precisely what it is. Not just a closed map, but it is what, it is

universally  closed.  From  a  compact  space  to  Hausdorff  space,  a  continuous  function  is

universally closed. So, let us prove this. What you have to do? Take any space . I am now

changing the notation: instead of  etc., I have  etc. deliberately.



So, take any topological space , take  to . You must show that this is a

closed map. So, go to the graph of this function  inside  and consider the function  a

going to  . So, we know that this gives a homeomorphism of   with  . This map

itself is a homeomorphism, the image is the graph . The domain is . Moreover, since  is

Hausdorff, by criterion of Hausdorffness,   is a closed subset of . (So, this also you

have seen in part I.  Not very difficult.) 

Hence,   is a closed subspace of  . You see, there is no map now. Take a

closed subset, crossing with the whole space here, which is another closed set, yields a closed

subspace of the product. Also it follows that if you take the continuous function given by

 mapsto  ,  is  a  homeomorphism of   onto  the  graph  of  .  In

particular, it is a closed mapping being a homeomorphism. A homeomorphism is a bijection

which is continuous and closed.

So, it is a closed mapping, from where to where, from  to  and since  is

closed in , it follows that the map  with  going into  is a closed

mapping of  into . 

Now,   is  nothing  but  ,  the  -factor  goes  away.  Since  composite  of  closed

mappings is a closed map, we are done. 

I would request you to pay attention to the technique which we have used in this proof. This

kind  of  technique  is  used  in  several  topological  proofs.  It  involve  a  very  simple  idea:

statements  about  functions  being converted  into statements  about  sets and vice  versa,  by

taking the graphs. So, pay attention to this.
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So, now, we have come to the properness. Let  from  to  be a continuous map of locally

compact Hausdorff spaces, both  and  are locally compact Hausdorff. Then the following

conditions are equivalent:

(i)   is a proper map.

(ii)  extends continuously to a function  from  to , the one-point compactifications,

where . 

(iii)   is universally closed.

(iv)  The map  is closed and for every point ,  is compact.



See,  if   is  a  proper  map,  singleton   are  always  compact  and  hence   will  be

compact. But this property is much weaker. However,  along with just closedness of the map,

it  gives properness.  So, the last property is adopted as the definition of properness,  quite

often,  rather  than  the  other  three  conditions.  So,  when  you  do  not  want  to  mention

compactness  at  all,  you may put some stronger condition viz.,   is  finite for  every

. 

So, such functions are studied. So, this property, pay attention to this, is a wonderful property

which you can modify. So, (i), (ii), (iii), and (iv) are four different conditions. They are all

equivalent  for  functions  between locally  compact  spaces.  Again,  proofs  are  not  difficult

because we have already developed enough techniques here.

So, (i) implies (ii) we have already seen. That was our motivation to introduce the notion of

properness. So,  let us prove, (ii) implies (iii). From the lemma, it follows that   from

 to   is closed, which is  the same thing as saying   is  universally closed,

because  is a compact space, and  is Hausdorff space.

Any continuous function is universally closed from a compact space to a Hausdorff space.

That was the lemma. Now, let  be a closed subset of .  Note that we have to prove

 is a closed map, not just . For , it was ok because the domain was compact.

So, now I have to come back to  now.

So, let  be a closed subset of . Let  be the closure of  inside . So, be sure

where you are taking the closure, because inside  the closure of   is   itself, but  

may not be closed subset  of  ,  so you have to  take the closure here.  So, take the

closure of . Then  of  is a closed subset of .

But it is easily seen that  is nothing but . Because, the

point  goes to  under . So, if you remove that , namely, by taking intersection with

 here, consider only points which look , then it is the image of  under .

Use the fact that  is  and  for . Any extra points in the closure of

 should have its first coordinate equal to infinity. 

So,   is equal to  . This thing is closed in  , so

this intersection with  is closed inside , because  is a subspace of .

Ok, that proves (ii) implies (iii) namely we have proved that now  is universally closed. 
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Now, I have to prove (iii) implies (iv). Of course, universally closed implies closed. So, only

thing that is left out: inverse image of a single point must be compact. This is what remains to

be proved. Taking  as singleton space . It follows that  is closed. That is what we have

seen earlier. 

Now given any  , singleton   is closed, because   is Hausdorff. Put  .

That will be a closed subset of a locally compact Hausdorff space . Hence, it is a locally

compact Hausdorff space by itself.  I want to prove that it is compact.

Since   is a closed subset of  , it follows that   is also universally closed. That is, for

every ,  from  to  is a closed mapping. But this can be identified with

the projection map  from  to . Since, this is true for all . From a previous theorem,

it follows that  is compact.

See, this is what we have to use now. Projection map away from a space is a closed map then

the space is compact. That is what we have proved, Michael's theorem. 

So, (iii) implies (iv) is done.
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Now, the proof of (iv) implies (i). So, what we have, we have a function  which is closed

and inverse  image of  each  single point  is  compact.  From that  we have to  show that  the

function is actually proper, namely, inverse image of any compact set is compact. So, start

with a compact subset  of , put  equal to . We have to show that  is compact.

So, take  be a family of all closed subsets of  having the finite intersection property.

Remember that if we show that intersection members of  is non-empty, then it will follow

that this  is compact. That is the thing that we are going to use now. We want to show that

 has intersection property under the assumption that it has FIP, finite intersection property,

namely, any finite collection of members of  when you take their intersection that is non-

empty.

By including intersections of any finite number of members of   to this family, we may

assume that  is closed under finite intersection. To begin with any family you can take, but

then you can expand it to include intersections of all finitely many members .

It does not change our problem, it does not simplify our problem as such, but this assumption

helps, that is all. All finite intersections of members of  are again inside , we can assume

that. 

Now, let  be collection of all the images of members of  under . So, these are now inside

. Then  is a family of closed subsets of , why? Because  is a closed map. They are all

closed subsets of  because I started everything inside  here. So, when you take  of that

they will go inside . Subsets of   with finite intersection property. So, finite intersection



property is true for  also. Therefore,  has intersection property, i.e., intersection of all the

members of  is non-empty.

Let  belonging to this intersection of all  where . Then put  equal to .

That  is a compact subset  of  ,  this is  the assumption on  . Actually   is  a subset of  

because this   is inside  . Now, consider the family   whose members are  , where

.

So, we have this family  already, we are taking each member there and intersecting it with

this . You see remember this  was chosen in the image of  for all . Therefore, 

is non empty for all . Clearly each is a closed subset. And finally,  is closed under finite

intersections because we have assumed that  has that property. 

Hence,  has IP because they are subsets of this compact subset . But then the problem is

over, because this non-empty subset is a subset of all the intersections without taking  into

consideration. This is a larger intersection. So, this must be non-empty.
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So, I told you that any arbitrary closed map need not be universally closed. You can use the

fact that if you have a non-compact set, then the projection map will not be closed and so on.

So, here is a very simple example. By the way, a few years back, maybe 2 years back, I

taught this course, to a couple of students and one of them came up with this idea, his name is

Vidit. So, I put his name here. So, here is a very simple example.



Take any space  such that the projection map is not closed. For example, you can take 

equal to . (Indeed any non-compact space will do. If you are not sure of that, at least you

know that the projection map from  to   is not closed.) Now,  inside  to be any

point. Then constant map  from  to  is clearly a closed map. 

This we have used earlier. A function into a singleton space is always a closed map. Now,

consider  equal to identity cross the constant map from  to . I have taken

 to , say, this is ,  to .  

If   from   to   is the homeomorphism which ignores this   factor, viz.,  

going to , then  is nothing but the projection  from  to . Just look at  on

 Under , it goes to  and then under , it is mapped to . So, whole thing is 

goes to . So, this is the projection map, the first projection map. That is not a closed map.

It follows that identity cross   is not a closed map. Because if   where closed, since   is

closed, their composite would have been closed. The composite is not closed and one of them

is closed therefore the other one cannot be closed, that is all. So, identity cross   is not a

closed map. All that I have taken is  is a space which is a non-compact space. That is all.

(Refer Slide Time: 33:34)

The one-point compactification of a locally compact Hausdorff space is smaller than all other

Hausdorff compactifications. Remember, we have put a partial order on compactifications.

So, given any two of them, they may not be comparable at all, but here is one conclusion

namely the one-point compactification is smaller than all of them.



In  particular,  each  one-point  compactification  is  smaller  than  all  other  one  point

compactifications. But we have verified arbitrary one point compactification, one is smaller

than the other, the other is smaller than the one, that need not imply they are equal. Equality,

or what we actually want, equivalence is not always possible. So, be careful about that. But

smaller makes sense.

So,  what  is  the  meaning  of  smaller?  To  see  that,  let   be  any  Hausdorff

compactification  and  let   is  a  one  point  compactification.  Consider  the

homeomorphism  from  to . You start with , come to  and then go

to .  Extend this to map to a map  from  to , by sending all the points not in 

to the single point infinity in . So, this is a nice way of extending it. Do not disturb the 

part at all. So, all the points which are outside of , you collapse it to one single point. The

only thing you have to check is that, why this   is continuous. We need to check only the

continuity of  at points other than  in the compactification . Once you do that, you

have got the inequality, viz,  is bigger than or equal to , that is all.
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So, let us see why this map  is continuous. If  is an open neighborhood of infinity in ,

then by the definition,  must be a closed and compact subset of , that is the

definition of the Alexandroff's compactification. Hence,  , say equal to  , is a

compact subset of , because  this is a homeomorphism.  

Since,   is Hausdorff,   will be closed in   also. Any compact subset of a Hausdorff

space is closed.  (  is  closed in   but why should it  be closed in  ? Observe that



without Hausdorffness of , we would not be able to conclude this.) Hence, the , (

 is remember it extends the identity map on the entire of  by pushing all the extra elements

to single point infinity), so  is nothing but . That is an open subset because 

is a closed subset. Thus, we have proved that the map phi is continuous at all the points away

from  , since they are all going to the point at infinity in  . So, this completes the

proof. 

So, one of the fall outs of this study is the concept of universally closed functions and proper

maps. There are many other applications of one point compactifications themselves. But let

us go to other things now. So, today we stop here.
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Next time we will study another compactification, Stone-Cech compactification. Thank you.


