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Hello, welcome to module 2 of NPTEL NOC an introductory course on point set topology

part 2.  Today, we will take up the topic of differentiation on Banach spaces. So, many things

run parallel to what we do in calculus, one variable calculus or two variable calculus and so

on. 

Actually, you will see that we copy many ideas from one variable calculus but the things

have to be put in a proper perspective. So, start with two Banach spaces one can possibly do

many things with just norm linear spaces also but we will concentrate only on Banach spaces.

Because our idea of presenting these results is not to do the entire thing in a very general

setup but to cover the implicit function theorem and inverse function theorem for Banach

spaces as a sample of application of topological methods. So, that is why we will concentrate

only on Banach spaces. 

Take a subset  contained inside , an open subset around a point  inside a Banach space

. Note that the concept of an open subset makes sense here because we are using the norm

to induce a metric which in turn  induces a topology on . Start with an open subset  around

a point  and a function  defined on this open set into another Banach space.  is said to be

differentiable at  if there is a continuous linear map  from  to  such that this limit is



equal to  . What is this stuff? It  is  . Note that unlike in  -variable

calculus, I cannot divide by , because  is a vector in . 

Therefore, to get a real number, I take the norm of  and then divide by it. Note that  is a

continuous linear map which is going to be called the derivative of . Then I can divide by

norm  this limit as  tends to  which is same thing as saying norms tends to . This limit

must exist as a vector in  and must be zero. This is the same as saying that the limit of the

norm  of  the  difference  divided  by  norm of   as  a  real  number  is  zero.  Note  that  this

numerator is taking value inside . So, divided by norm  of course that is just a scalar. 

So, this is a vector inside  this limit must exist. So, the important point here is that we must

have a continuous linear map . This is the part of the definition. I don’t want to question

that. Indeed, there are slightly varying definitions, some weaker and some stronger and so on.

There  are  different  definitions  by  different  authors,  and  then  they  will  make  under  this

condition this will be equal to that one that will be called this one and so on. We are not

going to study all that in this course. So, let us take this definition namely, there must be a

linear map which is bounded, i.e., a continuous linear map  from  to  which satisfies this

limit condition. 

As soon as such a  exists, it has to be unique. You cannot have two different linear maps 

and  satisfying the same property for  . This follows exactly the same way how you

prove the uniqueness in the case of usual calculus of one or several variables. So, uniqueness

is not a difficulty.
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So, that unique  is called the derivative of  at the point  and I am using the same notation

 for it, the standard notation. The only thing is you might not have called it a Frechet

derivative. We are going to call this , the Frechet derivative of  at . Frechet started this

study of Banach space calculus.

If  is differentiable at each point  inside an open set then we say  is differentiable on the

open set . Further, if the function which assigns to each point  of , the Frechet derivative

of  at , remember the derivative is a bounded linear map and so, we get a function taking

values inside , denoted by  from  to . If this itself is continuous then we

say that   is continuously differentiable on  . Or we can say it is of class   or   so on



depending on whether  is itself is continuously differentiable and so on.  So, we will stop

here with class  functions here. 

So, if you go back and peep into your calculus course, the very first thing you did now is the

so-called increment theorem for differentiable functions or a function which has a derivative

at  a  single  point.  Rewriting  this  limit  condition,  by  clearing  the  denominator  and

reinterpreting.  That  is  called  increment  theorem.  In  other  words,  we define  the  quantity

 by  the  equation  .  Then  the  limit

condition can be restated as limit of  divided by  is zero as  tends to zero. The

term  which clearly depends on  and  is called the remainder term, etc.  

So, this is called the increment theorem or the first approximation, linear approximation to 

at the point . If you increase the value of  by , the increment is roughly . You

can ignore this last term , when  is small. That is the whole idea.

Why? Why should you ignore this one? What I mean is that what allows you to ignore this

one? It is not always possible but because of this definition what we have is that if you divide

this by  and take limit then it is . So, remainder after the first term here has the property

that divided by  and take the limit as  tends to zero is zero. So, this is called increment

theorem exactly as in the case of one variable calculus. 
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The following statements are all easy to check exactly as in the case of one variable calculus.

Every constant function is differentiable everywhere. Everywhere means what? On the whole

of   wherever  they are defined.  And derivatives  of  constant  functions  are always  ,  the

derivative at all the points is , for a constant function.

For every vector  , consider the translation function  . See, on a vector

space we have this function   going to  , where   is fixed; it is called the translation

function; I have written   here; maybe I will forget to write this notation every time the

translation function is very easy to remember. 

It is differentiable everywhere and its derivative is the identity function remember translation

is from  to . So, the derivative will be also from  to . It will be a continuous linear map.

In this case, it is the identity map of . All that we have to do is to go back to this definition.

 will be what? It is 

,  cancels out, it is just like . So, what should I should take  to

be? Take , identity map then this numerator itself will be identically . So, the limit

will be zero as needed. So, the translation maps are differentiable their derivative at every

point being the . 
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Similarly, every continuous linear map  is differentiable everywhere with its derivative at

each point being be the same linear map . 

Here one lucky thing is that we do not have to make further assumptions. Start the linear map

you do not know that it is continuous. So, you have to make the assumption you have to put

that extra condition continuity. Once it is continuous it is differentiable and its derivative is

again the same function  at all the points . 

This is again a standard result in multivariable calculus of finite many variable. If you have

linear map its derivative it is a linear map itself.  You can directly verify it by taking  itself

as in the slot in the third slot here. So,   is   that is all that will

give you that  itself is the derivative of  . 

However, in the general case, because in our definition, (we somewhat artificially) demanded

that the derivative should be a continuous linear map, we have to also start with a continuous

linear map.

And  then  this  standard  addition  rule  and  scalar  multiplication  rule:  if   and   are

differentiable at  and  are scalars, then  is differentiable at . Indeed if  and 

are themselves scalar functions functions from  to  which are differentiable at , then this

 (this is not a composition this is this is just multiplication right with scalar multiplication)

is differentiable at  

So, the derivative of   makes sense. Similarly the derivative of   makes sense the sum

will  be also differentiable  at  .  Of course  you have to use Leibniz rule  here  to get the

derivative of the sum. Also, if  is differentiable at , then it is continuous at  same proof

as in the case of one variable. This is one variable calculus after all. You can just look at the

increment theorem here, to show that  is continuous also.  
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So far, except that in the definition I have started with continuous linear map, everything is

just  like  one  variable  calculus.  In  the  one  variable  calculus,  the  derivative  is  just  a  real

number,  but  if  you  think  carefully  (you  may  have  done  this  already)  that  real  number

actually represents a linear map from   to  , namely, the multiplication by that number.

Thus, so far, there is no difference at all. 

So, it may be noted that if  is differentiable at x naught then all directional ... very sorry, let

me recall this one. I am jumping to say that all directional derivatives also exist. So, let us

know what is the meaning of directional derivative in this context. Again this is the same

thing as in the case of multivariable calculus.



Starting with two Banach spaces  and , an open subset  of , and a point  belonging

to  .  Now you take  any  vector  preferably  a  non-zero  vector  (even  the  vector   is  also

allowed) take any non-zero vector . Let  from  to  be any function. Then this is the

directional derivative of  in the direction of  at the point  is defined as follows: 

Namely  it  is  a  vector   inside   such  that  the  limit  as   tends  to  zero  of

 whole of this divided by  is zero. 

So in the definition of differentiability, you have replaced the bounded linear   by a very

specific  one viz,   going to  ;  the limit  is  taken not over all  vectors   but restricted to

multiples  of . That is the differennce. The numerator is just a function the real variable 

and takes values in . You are dividing by  itself, no norm. ,  and  is fixed. So, it is

function of real variable, one variable. Then this limit must be . In other words, if you just

look at  the function   maps to  ,  then this  function must  be differentiable as a

function of  and its derivative is .

That vector  is called the directional derivative of  at  in the direction of . Exactly same

definition as in the case of usual multivariable calculus. 

And you can immediately verify that all the directional derivatives will exist as soon as the

derivative at  exists. So, often one calls the other derivative which you have defined as the

total  derivative.  You  can  talk  about  partial  derivatives  but  then  you  have  to  fix  up

coordinates. In Banach spaces coordinate fixing is something very fishy. You do not want to

do that. 

So, let  and  be any two normed linear spaces. A continuous linear map  from  to  is

said to be an isomorphism, if it is invertible as a function and the inverse is also continuous.

So, here I have taken this definition for all norm linear spaces.
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The  remark  here  is  that  the  inverse  of  a  linear  function  is  automatically  linear.  This  is

elementary algebra on any vector space. If you have just a bijection which is linear then the

inverse is automatically linear that is not a problem. 

But inverse may not be continuous this is what we have been telling. Even if it is a bijection

and continuous, its inverse may not be continuous. So, in the above definition, we have to

mention  it  separately.  In  the  above  situation  some  authors  simply  call   an  invertible

operator. They do not separately mention that inverse is also continuous etc, they will just say

invertible operator. But the continuity of the inverse is also assumed. So, I will also use that

terminology. 



If   and   are  Banach  spaces  then  for  any  invertible  (bijective)  continuous  linear

transformation  from V to  automatically  will be continuous, i.e.,  and  are both

invertible operators. See remember invertible just for me does not mean that it is continuous.

So, I want to be very careful invertible operator is by convention inverse is also continuous. 

A linear map may be invertible it has an inverse but its inverse may not be continuous even if

it  is  continuous.  That  is  why I am making this  extra  caution. However,  if   and   are

Banach spaces then there is no problem. Automatically the inverse will be also continuous.

But this one needs a deeper theorem there, namely, what is called as open mapping theorem.

We are not going that deep into function analysis here.  This  is  not  a course on function

analysis. But I am just mentioning this. I will never use this property because we are not

going to prove this here. I am just mentioning it as an information; that is all. 
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If  is an isomorphism from definition 1.4 (of boundedness) applied to both  and , we

get two constants  and  such that  is less than or equal to etc.

This right-hand side constant  says  is continuous: . Similarly I must have

other way around also for   which will give you a   on this side. viz.,  

which you can rewrite it as . So, both sides you get a constant. This may

remind you the concept of two linear transformations being similar.

This is a special case in some sense. Here only one function  is involved. You may say 

itself is a similarity, because it is similar to the identity map. It is not the identity map but it is



similar to the identity map. So, a linear map  from  to  is called a similarity of the two

norm linear spaces if it it satisfies this condition. We have studied similarities in the part 1. 

(Refer Slide Time: 22:44)

Now here is a theorem that I need to use. So, go through this carefully. Start with two Banach

spaces put  (  is a temporary short form when  and  are understood) the

set  subset  of  ,  of  all  similarities   from   to  .  Not  all  bounded  linear

transformation but only similarities. Consider the function eta from  to , defined by

. 

So, each element in  is inevitable. So, I can take their inverse. I am getting inside .

Everything is happening  and  which are Banach spaces. Then  is an open

subset of this  and  is differentiable on the entire of . 

So, I am not stating  non-empty. (If it is empty the statement is trivial.)  First of all I say that

this subset  is an open subset of  (remember  itself is a Banach space) and

 is  differentiable  on  .  Further  the  derivative   at  any   is  an  element  of

 because  itself is a map of  in into . For each point  of 

you have a bounded linear map from  to .

It  is  obtained by pre-composing with   first  then again post-composing with   and

finally putting a minus sign. So, it looks a bit complicated.  For every  belong to ,

(not  necessarily  invertible)   is  .   is  a  subset  of  .  I  am

claiming that   is an open subset. On this open subset you have a function. You can talk

about  whether  it  is  differentiable or  not.  The statement  is  that  it  is  differentiable  and  its



derivative is given by this formula.  So, that is statement. So, let us see the proof which is not

all that difficult.
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First of all, what may happen if this  is empty. What is the meaning of that? There may not

be any similarities between  and . So, if you want to say anything there is no statement

about  this  being an empty set.  Whatever  I  have  stated is  vacuously  true.  So,  we should

assume that  is non-empty that is all otherwise you do not have to prove anything all. 

So, assume  is non-empty. What is the meaning of  is non-empty there is some similarity

which means  and  are similar. Already that is a non-trivial assumption. 

The  above  theorem implies  in  particular  that   is  continuous.  Because  we have  already

remarked that any function which is differentiable at a point is continuous at that point. We



are going to prove that this eta is differentiable on the whole of . Therefore it is continuous

on  which is not stated here but it is an easy consequence of that. So, we will use that also at

an appropriate place.  

(Refer Slide Time: 27:40) 



First, toward the proof of that  is an open subset, in the last lecture, we have already made

the preparation for this. So, let us see how? Take a point   inside  . What is it?  It  is a

similarity from  to .  I am taking  equal to . Then I am claiming that the ball of

radius  around  is contained inside .  is an arbitrary point of , a ball of radius  is

contained inside . This  is obviously is non-zero. For each point in , you have an open

ball contained inside . So,  is open. 

Remember we are working in ;  subset of . Let  belonging to  be

such that . Then we know that , which in turn is less than .

That is the whole idea why I took . So, it is less than  therefore by lemma 1.6(3)

that we have proved, it follows that  is invertible. 

There it is identity minus you can take  here and you can put this will become 

is invertible because norm of this one is less than  . But then you can write   as  

composed with , which mean  is invertible.

So,  is an element of .  So, these are the points inside the open ball.  Every element in

this  open ball  looks like   where  ,  that is  the ball.  So, the whole ball  is

contained inside  , that is all we have proved that   is open. Now, we want to show the

differentiability  and  the  formula  for  the  derivative.  Fix  a  .  I  want  to  show  that   is

differentiable at . 

Clearly, the map  going to  is a bounded linear operator. Why?  is the variable

here I am taking the right composition and then the left composition by some other bounded



linear operators viz.,  on both sides now. So, we have seen that composing left or right is

again a bounded linear transformation. What are they? actually  and . 

So,  this  map   going  to   is  nothing  but  I  have  a  short  notation  is

, that is its minus sign coming here you see in the statement is minus

sign. So, . 

This is a linear map from  to . We want to show that it is the derivative of 

at  .  This  is  the  same  thing  we  are  showing  that  the  limit  of

 is zero. The numerator is .
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So, first of all  can be written as . (I have stopped writing composition

and using the simplified multiplicative notation:  directly for  composite  etc. So, this is



just for convenience everywhere composite I have already stopped writing compositions here.

But now when I am doing computation I am just using multiplicative notation. You must

understand that these are compositions that is all. 

So,  . So, since we can choose  , while taking the limit.

Then   and hence we have this   can be inverted   will be

nothing but the summation from  to infinity of . 

From the formula above , we get  is equal to  composite with the above

geometric series. So, the first and the second term cancel out, we can pull out . So,

the numerator  becomes   composited with the alternate summation from   to

infinity of  powers.   

Now what we have to do? We have to divide it by  and then show that the limit as 

tends to zero is zero. Instead, it is enough to show that the entire norm tends to zero. So,

when you take the norm of the numerator, it will be less than or equal to square of  times

some constant. One power cancels out with the denominator. Therefore, as  tends to , the

norm of the entire thing also tends to zero. 
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So, we have shown that   is differentiable. From an earlier remark it is continuous. I have

already told you I am repeating it.  is continuous. But how to show that  is continuous.

We  use  the  formula  for  .  Look  at  the  formula.  Formula  says  that   is

. 
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From part I, we know that the left composition   and right composition   are continuous.

Since   is continuous, it follows that   and   are continuous. Therefore

their composite is also continuous. Therefore  is continuous.  
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So, here is an exercise I am not going to use it in the course but this is something which is

very very useful for people who want to study Lie groups and so on. So, that is precisely what

it is take any Banach space that   will denote the space of all bounded linear operators

from  to . 

Obviously you can compose two elements of . This composition is differentiable. So if

you take the set of invertible elements, then it is something more that a topological group



namely what is called a Lie group modelled on the Banach space  . So, if you want to

study Banach Lie groups this is the starting point.

So, I  am giving you this an exercise.  Show that  mu is  differentiable  compute  its  derivative.  Let

 denote this open subspace of  consisting of all isomorphisms. They form a group Along

with our theorem above, this exercise implies that  is a Lie group modeled on Banach space.

So, that is just an exercise. The only thing is you will see how to differentiate this one, where the

derivative taking values if you figure it out then you will know what the derivative. So, thank you

very much this is all for today. 


