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Hello welcome to NPTEL NOC on introductory course on Point-Set-Topology part II. So, we

continue with the study of compactification, today module 19, Alexandroff's compactification

continued.  Last  time  we  introduced  this  special  one  point  compactification  of  a  locally

compact Hausdorff space which will be automatically compact Hausdorff space that is what

we have seen. 

We have seen that any closed subspace of a compact space is compact. This is not the case

with an open subspace. However, it is not hard to prove that every open set in a compact

Hausdorff space is locally compact. This you can do directly. Whatever theorem we proved

tells  you  that  every  locally  compact  Hausdorff  space  is  an  open  subset  of  a  compact

Hausdorff space. That is a corollary to the Alexandroff's compactification that we produced

the other day. Here we shall prove the converse now. 
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A topological space  is locally compact and Hausdorff if and only if it is an open subspace

of a compact Hausdorff space. So, this is what we want to proof. The `only if' part all that

you have to do is to  take one point compactification namely Alexandroff’s compactification

of  as in the previous theorem. Now, let us come to the converse part, `if' part. 

Suppose  is an open subspace of a compact and Hausdorff space . Clearly  is Hausdorff;

every subspace of a Hausdorff space is Hausdoff. So, we are only left with proving local

compactness. So, given   belonging to an open set   in  , we need to find an open

subset  such that  is inside ,  is contained inside  and  compact. Since  is open in 

,  is a closed and hence a compact subset of . 



Therefore, we can find disjoint open subsets   and  in   such that   in   and   is

contained inside . Here I am using that  is compact Hausdorff space and hence is regular.

This means that this  is contained is a  which is contained inside of  because  and

 are disjoint open subsets. Since   is a closed subset of  , because   is open, so,

 is compact. Therefore,  will be compact. It follows that  is as required. That is all. 

So, it is easy the part but we wanted to record this one, viz., what happens to an open subsets

of a compact Hausdorff space and vice versa. 
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Here is a corollary to this theorem. Let  be a compact subset of an open set  in a locally

compact Hausdorff space. Then there exists a continuous function  from  to  such that

 equals  and  equals . 



This theorem we have proved earlier. At that time also I had indicated that we will have a

different proof of it. 

Now, this becomes an easy consequence. Because starting with a   compact subset of an

open subset   of a locally compact Hausdorff space, (  contained inside locally compact

Hausdorff  space  is  the  situation  but  you  pass  on  to  one  point  compactification,  you  are

transferring the whole situation into a compact Hausdorff space, then this becomes an easy

corollary that is what it is. 

(Refer Slide Time: 6:04)

So, I repeat we need to consider the case when  itself is compact. If   itself is compact,

then there is nothing to prove. Otherwise, consider the one-point-compactification  of 

(which is actually the Alexandroff's compactification). Then  is compact in  also because

 is already compact subset of , and hence closed in  because  is Hausdorff. Anyway,



 is open in  , since X is open in  . Since a compact Hausdorff space is normal, by

Urysohn's lemma we will get the required function . 

So, instead of local compactness, we are able to convert the situation into compact space,  by

compactification. 

So,  this  was  one  of  the  reasons,  I  had  told  you  why  people  study  compact  spaces  and

compactifications. The things which cannot be solved inside an arbitrary space you can solve

it by going to the compact space and then solve it there and come back. So, this is just a small

illustration of that. In any case, this theorem itself we have proved directly also in to 2.14. 
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So, let us examine a few simple examples.  First,  we have already seen that  the simplest

example  of  one-point-compactification  is  any  half  open  interval  contained  in  the  closed

interval. Note that  is a compactification of the full open interval  also but that is -

point  compactification.  It  is  not  one-point  compactification.  What  is  then  the  one-point-

compactification of this open interval? In order to answer this, we will actually answer a

much more general question. Remember any open interval is  is homeomorphic to  itself.

So,  in  general,  what  I  am  asking  is  what  are  the  compactifications  of  ,  one-point-

computation in particular. Since 's are locally compact Hausdorff, we are actually talking

about Alexandroff's compactification here. 
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So,  let  us  have  a clear  geometric  understanding  of  these  compactifications.  Consider  

which  is  both  locally  compact  and  Hausdorff.  By  the  above  theorem,  we  know  that

Alexadroff's  one-point-compactification  of   is  a  compact  Hausdorff  space.  Indeed,  a

geometric description of this space is possible in this situation. 

We claim that for n greater than equal to , there is an embedding  of  into  such

that the image is an open set with its complement being a single point. I have chosen a very

specific  point  here  namely  the north  pole   the  last  coordinate  .  It  is

usually called the north pole. The point   on   with its last coordinate equal to   is

called the south pole. 

Clearly,  is an open dense subset of . This is an open subset. So, all that we

have  to  do  is  to  construct  this  .  Later,  we  will  actually  show  that   is  the

Alexandroff's compactification.
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So, recall some notation here.  is the unit sphere in : all points  such

that  . And  is a north pole and   is the complement of the singleton . So,

what I am going to do here? Geometrically I will explain what I am doing here. Look at this

North pole . Take any point  of  other than , that is a point of . It just means that

this line segment  extended to a full line, call it , will hit the subspace , i.e.,

the subspace of all points with their  ^th coordinate being  . Why? Because this line will

never be parallel to  , because the  ^th coordinate of   will be less than  . So the

extended line will hit  exactly at one point. 

So, this is clear from this picture. Denote the point of intersection of the line and 

by  .  Then   defines  a  mapping of   onto  .  It  is  called the stereo  graphic

projection from .  (Instead the north pole, you can take any point   on  and define a

stereograpphic projection onto the hyperplane perpendicular to the vector .)
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So, let us now work out a formula for  .  So, how to write down the formula? You start

writing down the parameterization of the line passing through  and , specialize to the case

when the last coordinate becomes zero, that is all. 

So, given any two distinct points in  ,   times this into   times that will give you the

entire line as  ranging from  to plus . 

So, here specifically we have, , as  varies inside , gives you all the points on

the line. We want this point to have its -th coordinate . That is the point of intersection of

this  line   and  the  plane  .  So,  what  is  the  ^th  coordinate  of  this?  It  is

.  ^th coordinate of   is   here is multiplied by  , so  .

That will give you a unique  which is equal to . Remember this . That is



very important here. So, this is a valid solution. Go back here, put  equal to , in

the general formula for the points of , you precisely get . 
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Therefore,   has  the first  coordinate  divided by  ,  second coordinate  divided by

 and so on. We can ignore the last coordinate which zero and write   as a function

from  to .

In order to compute the inverse map, we can reverse this geometric argument. So, go back

here,  start with the point   on this hyperplane  . How to get  ? Very easy,

namely, join  and , the line intersects the sphere   exactly in one point other

than  and that is proecisely the point . Note  is already a point on the line and the sphere.

So to obtain this point ? In the parametetric for of the line you have to put the condition that



the point   whatever we want lies on the sphere, summation   is  . So that will lead to a

quadratic equation in   giving the two solutions. We already know one solution  . So, the

other  solution is  very easy to  determine.  So, that  is  the geometric  way of  describing the

inverse of  as well as getting a formula.

 

So again, I am taking  is an element of  as thought of as an ^th vector with the

last  coordinate  being  .   where   runs  over   is  the  line.  When  you take

coordinates, take their square take their sum, and equate it to  . That is the condition that I

want this point to be on the sphere. That gives you . Note that the 

^th coordinate of  is zero whereas all other coordinates of  are .   

The constant term cancel out. So, you get  and the entire thing mutliplied by 

equal to zero. So, the solution corresponding to  equal to  is the point . So, I do not want

that. The other solution I want, namely cut down this  what you get is  equal to  divided by

.

For this value of , if you plug in here, what you get is the point  where  is . So, this is

. So, I am denoting it by . This is a notation now. ,  ,  etc.

 and the  coordinate is  which is equal to . 

Geometrically there is no need to verify that these two function  and  are inverses of each

other. However, if you are not satisfied, you can plug this formula for  inside here and see

that  as well as  will be identity maps. 
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So, look at the formula, they are not only continuous, they are actually differentiable as many

times as you want. Therefore, what we have is that both  and  are diffeomorphisms in their

respective domain. In particular,   from  to  is a diffeomorphism onto , so, it is an

embedding of   in  . Thus what we have proved so far, is that   is a one-

point-compactification of . 

So,  let  us  also  verify  that  this  one-point-compactification  is  actually  Alexandroff's

compactification. There are several ways of doing it. 
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One simple way is to get a homeomorphism  from  to , the this Alexandroff's

compactification which preserves the two embeddings. All that I do is to take this  which is

already defined on this open subset of  to equal to  and then extend this to  by sending

the point  to the point infinity in , or star whatever the notation is. 

Whenever  is equal not to ,  is equal to . So,  has been extended to the function

tau on the whole of . So, this function  is well defined and is a bijection, no problem there.

The only thing we need to verify is continuity of  at , which is very easy.  I will leave it to

you  as  an  exercise.  Once  you  check   is  continuous,  it  follows  that  this   is  a

homeomorphism because it is a bijection from a compact space   to a Hausdorff space

. Moreover,  is what?  is inside  and therefore, . But  is

the inverse of  and so that is equal to . So  is identity on .  

So, this proves that  is equivalent to the Alexandroff's compactification of . 
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More generally, instead of taking the North Pole you could have taken any point  on .

The geometric argument will be exactly the same. The only thing is now you should not take

 but you should take the vector  and take the subspace which is perpendicular to

this  to project the entire of . That is all the modification. However, the formulae

will get more complicated, though the geometric argument is as good as in this special case,

there is no change there. So, all of them would have given you embeddings of  inside

.

 

The case  is of special interest, because, we can then express eta in terms of complex

numbers also. First identify  with complex numbers . Then  can be written in a different

way in terms of . Suppose  or you write , then our formula for  will



be  much  simpler.  Actually  all  this  norm  etc  can  be  written  nicely,    is  equal  to

. 

So, we are working now with  . So, this picture will actually give you the so called

extended complex plane.   union infinity, will be identified by this map with unit sphere

inside .
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As a subspace of ,  gets the Euclidean metric from  which when expressed in terms

of the parameter   can  be thought  of  as a  metric  on   itself.  So,  you are metrizing  the

complex numbers in a different  way. So, what is the formula? So I am writing this new

distance function as  equal to . If you compute it using the formula for

, it  will be equal to . So this is  called chord-metric and

that is why I put a suffix ` ' here. 

So, when you take two points of  sitting inside , all that you have to do is to look at the

chord  and its length. That is  . So, it is called the chord metric. In particular,

this metric on  is a bounded metric. Topologically it will give you the same space. 

The same thing you can do for any , but you will not get this nice formula. Because here

we have used specific algebra of complex numbers, that is all. 



We shall meet another interesting compactification of  in chapter 10, namely, example

10.15. There are, as I have told you, many compactifications of a given non compact space.

So, it is not possible to discuss all of them. 
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So, here is an exercise. The hint is that I want to draw your attention to namely, we proved a

big theorem about locally compact Hausdorff  spaces in 2.40 about  the neighbourhood of

connected components of such a space. So, if you use that one, you can solve this problem.

And when , this has a special significance, in the case of complex numbers. So, it will

give you a characterization of simply connected domains in  purely in terms of  itself, viz.,

without going to the extended complex plane. Namely, a domain  in  is simply connected

iff   has no bounded components.  So, this is  the characterization which is  purely in

terms of the topology of . So, solve this exercise and enjoy it. Thank you. Next time we will

study proper maps.


