
An Introduction to Point Set Topology (Part 2)
Professor Anant R Shastri

Department of Mathematics
Indian Institute of Technology: Bombay

Lecture No: 18
Generalities on Compactification

(Refer Slide Time: 00:16)

Hello. Welcome to NPTEL NOC an introductory course on point set topology Part II. So, our

next chapter is Compactifications. So, compactness plays a very central role, an important

role in the study of topological  aspects.  One always looks out  ways of reducing a given

problem from a general situation where the given space may not be compact to a situation

when the space involved is compact. Compactification is a tool in this direction. 

We shall study three important versions of it.  In this chapter, we begin with the study of

Alexandroff's  1-point-compactification in  full  detail.  Then we take up one of  the  closely

related concept namely proper maps. After that we will study Stone-Cech compactification.

The third one is-- see I have mentioned three of them third one which is called Wallmann

compactification  will  be taken later  on.  It  will  not  be taken in  this  chapter  because  that

requires some other notions to be developed. 
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So, welcome to Module 18. First we shall discuss some generalities about compactification.

Let  be a topological space. Let us tentatively have the following definition. A topological

space  maybe called a compactification of  if the following conditions are satisfied. The

space  must be compact first of all. That is the first thing. 

 must be a subspace of  . So given space   is an enlarged to another space   which is

compact. So, that is what we want. How mcuh you want to enlarge? Not too large  must be

dense in . So, these are the three requirements we would like to have. Then you can call 

as a compactification of . 

At the first glance, the above definition is perfectly alright. However, in order to be able to

carry out a comparative study of various compactifications and so on, we shall introduce

slightly more elaborate definition here.  

So,  technically  we  have  to  be  a  little  more  precise,  but  idea-wise  we  have  to  keep  just

remembering the above these three things. For a compactification these three things are fine,

but technically we will put it slightly differently.
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So, here is a technical definition. Start with a topological space X. Consider an ordered pair

, or say, . So, what are these? First of all  is a compact topological space and 

is a map from   to   which is an embedding. So, you can use eta to identify   with a

subspace of . The second condition is that this subspace  is dense in . 

So, this way, we are taking care of all the three aspects that we wanted, namely, this  which

has been written as   here now is compact and eta from   to   is an embedding which

makes  into a subspace of  and the third condition is that the subspace  is dense in .

Now  you  look  at  two  such  pairs   and  .  Suppose  both  of  them  are

compactifications of , as defined above.

We will say they are equivalent if there is a homomorphism  from  to , such that (the

subspace   and   are  the  same).   is  equal  to  .  It  is  not  an  arbitrary

homeomorphism. The condition  equal to  is very important. 

So, check that the above relation is an equivalence relation. Every   is automatically

equivalent to itself;  reflexivity is fine. Symmetry is built is the definition,  because  is a map

from  to  which is a homeomorphism. and so,  will be homeomorphism which will

satisfied this property  is equal to . Symmetry is fine. Similarly, transitivity is also

easy to verify.  So, this is an equivalence relation. So, if you look at the collection of all

compactifications of a given space  then the above relation is an equivalence relation on it.

And an equivalence class of such pairs is called a compactification of .



So, this is the final definition. So, what we have brought here is not just some space, not just

the embedding, but an equivalence class of them that is one single compactification. In other

words, when you are talking about a topological space you have the habit of identifying all

spaces which are homomorphic to that space as equal to that, equality means homeomorphic.

In the same sense, all compactifications of ,  is fixed here which are equivalent each other

in the above sense are treated as one single object. 

In practice, whenever you are talking about a class you are always picking up a representative

pair  of  that  class,  any  one  member  in  that  class  and  then  you  call  that  itself  as  the

compactification. So, that is the practice that we are following. 

So, this much of liberty of language we are taking. But for the rigor, we will stick with above

definition. 
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So,  this  is  a  picture  for  what  is  the  meaning  of  equivalence  classes  this   is  a

homeomorphism, but its identity here  is  so this is what you have to remember. 
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In  practice,  we  usually  take  any  one  political  representative  of  such  a  class  as

compactification. Though we keep in mind that we are dealing with a representative of an

equivalence class. Also in practice we ignore specific embedding of  inside  and identify

 with . Then this  being subspace  can be thought of  as a subspace of . 

The above definition can be adopted appropriately depending on the context, for example,

you can keep adding extra adjectives for your compactification. Suppose, we are dealing with

smooth manifolds. There are compactifications which may not be manifolds, but you ignore

them you say okay my  must be also be a manifold. 

Suppose, we are dealing with only Hausdorff spaces then   chosen as above may not be

Hausdorff, in the above definition there is no Hausdorffness condition. But if we do not want

to go out of Hausdorffness and then we may put the extra condition that   must be also

Hausdorff and so on. That is the meaning of adopting this definition at various context, at

different contexts. After that you do not have to keep on saying that my compactification was

also Hausdorff and so on. In the beginning of the context, we should make it clear, that is all.
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On the collection of all  compactifications of a given space  , we can introduce a partial

order. So,  is bigger than equal to  (I am defining this partial order now,) if there

exist a surjective mapping  from  to  again satisfying this property, viz.,  must be 

. You can go back to this picture here. Instead of taking  which is an invertible mapping you

just take a surjective mapping that is all; the rest of the things are the same. Then you will call

this one is bigger than that. 

So, this  must be a surjective mapping. So, this is the partial ordering. It is easy to see that

 is bigger than or equal to itself. This relation is anti-symmetric and it  is transitive,

composite of two surjective maps is surjective and so on. So, this is clearly a partial order

alright. On second thought, is it really a partial order? 
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The above relation is clearly reflexive and transitive. What about anti-symmetry? So, I said it

is anti-symmetric but I have to be careful here. 

It is not clear if  and  are two compactifications of  each one is greater than

or equal to other then whether they are equal or equivalent. See equality here is equivalence,

as a class. So, can we prove that? Unless you prove this you cannot really call it a partial

ordering. Two given objects,  each bigger than the other mus implies that the two are the

same. 

Indeed, in general I do not know what to do, but let us take a special case. Suppose all the

spaces involved are Hausdorff spaces. Then we are in a fine shape, namely, if  from  to

 and  from  to  are surjective mappings such that  is  and  is , then

it follows that   is   and hence   is the identity map on the dense subset

 of . Since  is Hausdorff and there are two functions  and the identity map

from  to . They are both defined on the whole space  and they are equal on a dense

subset. Therefore they must be equal on the whole of  , because set of points were two

continuous  functions  into  a  Hausdorff  space  are  equal  is  a  closed  subset.  Therefore

.  Likewise,  it  follows  that   is  also  identity  of  .  Therefore,   is

homeomorphism,  is its inverse.



This  just  means  that  these  two  compactifications  are  equivalent.  So,  if  you  use  the

Hausdorffness then you are in a good shape. So, this is one strong reason why we will restrict

ourselves for most of the time to studying of Hausdorff compactifications only. In our mind,

we will  keep  thinking about  Hausdorff  compactifications,  but  in  the definition we allow

ourselves to go out of Hausdorffness because there are situations in which we have to study

non Hausdorff compactification also (the third example that I have mentioned).
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One more remark. A compact Hausdorff space is a   space and hence a Tychonoff space.

Tychonoff space is what?  , completely regular and  . And since any subspace of a

Tychonoff  space  is  a  Tychonoff  space,  it  follows  that  we  will  be  studying  only

compactifications of Tychonoff spaces. This is the fall out of restricting ourselves to only

Hausdorff  spaces.  Suppose  we  start  with  a  Hausdorff  space  and  we  have  a  Hausdorff

compactification  of  it.  Then  the  original  space  not  only  just  Hausdorff,  it  must  be  a

Tychonoff space. If it is not, you do not have a Hausdorff compactification. So, there is such

a  strong  restriction  here  if  you  want  anything  other  than  Hausdorffness.  So,  this  is  true

whether we buy it or do not buy it. This is what is there, that is it.
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So, here is a general demand. Unless we prove the existence of at least one compactification,

all this will be useless, you are talking in the void. It should not happen like that. Of course,

when  itself is compact then you can take  equal to  and  to be identity map, there is no

problem, but suppose  is non compact then only you want a compactification. There seems

to be no preferred way to get a compactification of a non compact space. That is one reason

why there are several solutions to this problem. 

Perhaps a method which may immediately occur to one's mind is  the so called  , the

Sierpinskification of  . However, even if   is Hausdorff   may fail to be so. Indeed,

 is always non Hausdorff unless  is empty and  is single point. So, if you want to

retain Hausdorffness, taking  is useless. 

Start with any Hausdorff space you may not get a Hausdorff compactification at all. 

However, we now know that there are compactifications of non compact spaces, namely, you

can take  if you are ready to go out of Hausdorffness. At least we are not working in a

void, there are compactification. 

From now onwards in this section, we shall assume that  is non compact. There is no point

in  discussing compactifications  of  a  compact  space.  So, I  may not mentioning   is  non

compact again and again. 
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For each , namely, natural numbers, by an -point compactification of , we mean a

compactification   where   has precisely   points.  That  means I have added

exactly  points to the original space . That is the meaning of this. For example, it is easy to

check that  the closed interval together with the inclusion map from  (or from )

is respectively a -point (or a -point) compactification. 

I have a question here, an open question for you. Think about it even if you do not get an

answer, it  is okay. Can you think of a  -point compactification of   the open interval

which is Hausdorff.  So, that is a question so think about it that is all. 
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Some  more  general  remarks.  Compactifications  are  always  studied  with  some  extra

specifications depending upon the kind of problem that we are interested in. It is not possible

to discuss all of them, certainly in an introductory course like this. So, in this section, we

shall study two such examples. Later on, we shall study one more. So, these three being the

most important compactifications in our mind. 

So, I have already told you the first two are Alexanderoff's one-point compactification and

Stone-Cech compactification. These two things, we will study in this lecture. 
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So, let me begin with Alexanderoff's compactification. Let  be any topological space.

Let   be the disjoint in union of   with one extra point which I am going to denote by

infinity. This is construction is modeled on what you call the extended complex plane. You

must be using this notation where  is the complex plane  and that is infinity. There is no

algebraic structures or any partial order etc. here just an extra point you should remember

that.

Let  be the family of all subsets  of  such that if  inside  then  must be in . All

subsets  of   which  are  inside  ,  they are  allowed inside   that  is  the first  condition.

Otherwise what are they? They must be containing infinity. So, the second condition is that

, when you throw away  from , what you get you will get a subspace of , so,

that must be a closed and compact subset of .  



So, this is the condition on the family  . Now this   becomes a topology on   which

makes   compact.  (  is  not  compact  this  the  standing  assumption  I  have,  but  this

construction I could have done it even when  is compact. If it is of any use you can use it

otherwise you can throw it away, but for logical reasons I could have done this one even

when   is a compact space. But it will not be a compactification of  ! That is why I am

saying `whenever  is not compact'. That is our central theme here.)

What  happens  to  ?  It  is  a  compactification  of  ,  where   from   to  X^star  is

inclusion map. See set theoretically  is just  union infinity. So  from  to  is nothing

but the inclusion map. 

Further,  is Hausdorff if and only if  is Hausdorff and locally compact. Once again we

are hitting the notion of local compactness here, in Alexanderoff's compactification. 

So, Alexanderoff's compactification is able to achieve Hausdorffness provided we start with

Hausdorff and locally compact space . So, this is the conclusion. So, let us deal with them

one by one. One or two things we have to verify here. 
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First thing is  is a topology. What you have to do. Empty set is there because empty set is

subset of . The whole space  is there why because if you throw away the whole space,

you get the empty set which closed and compact subset of . So, that is easy to see. If two

subsets are there in  and if they are already in already in  then their intersection will be

also in  so it will also in . If one of them is a subset of  and another one contains the



point infinity, the intersection is again in tau. If both contain the point infinity, then their

complements  are  both  closed  and  compact.  On  the  other  hand  the  complement  of  their

intersection is the union of their complements which is also a closed and compact subset. 

Next,  arbitrary union of members of  is there because once one of them contains the point

infinity, then the entire union also contains and its complement will be the intersection of the

complements of each of them which will be closed subset of a compact set. 

So,  is a topology. This topology when you restrict it to   becomes precisely . So, the

inclusion map is  a  homeomorphism, inclusion map   to   is  homeomorphism because

every open subset here becomes open set there, and vice versa under the inclusion map.

Now to see that   is compact,  if   is an open cover for  , I have produce a finite

cover.  Let us say infinity belongs to  . It has to be in one of the open sets anyway. Put

.   being open in   and contains the point infinity,   must be compact and

closed subset of  .  Members   such that   cover   and hence there will be finitely

many of them which cover . Together with  we get a finite subcover for .  
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Now come to the hypothesis that  is not compact. Then it follows that every neighborhood

of infinity should intersect . If  is compact the  itself would have been an open subset

in  , because its complement is compact and closed.   itself is compact and  is closed

inside . So, come back to the case when  is not compact. 



Then every non empty open subset of  must contain some point of . That is enough to

see that the closure of  is the whole of , which is the same as saying  is dense in .

This shows that  is a compactification according to our definition. 

It may be worth to note that   itself is an open subspace of  , i.e.,   is closed why?

because its complement in the whole of space  and that belongs to . So,  itself you want

to say  itself is an open subset of , open and dense. 
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So, finally we want to show that   is Hausdorff if and only if   is locally compact and

Hausdorff. If  is Hausdorff, being a subspace,  will be also Hausdorff that is easy. Why

it is locally compact? Let us prove this later. 

First assume that   is locally compact and Hausdorff. To show that   is Hausdorff, take

two distinct point  and  in . If both are in , by Hausdorffness of , these two points

can be separated by open subsets in   itself. The same subsets will do the job in   also,

because they are in  also.   

So, now suppose one of the point is infinity, say,   belongs to   and  . This is an

important case. Using local compactness of , we may assume that there is an open set  in

 such that  is in  and closure of  is compact. Take V to be the complement of  in .

The  is open in  and contains infinity. Clearly   is empty. So, I have prove  is

Hausdorff using local compactness and Hausdorffness of . 
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Now the converse.  Suppose   Hausdorff.  Then being a subspace,   is  also Hausdorff.

Moreover, for  belonging to  if  and  are disjoint open subsets of  such that  is in 

and infinity is in , then by the very definition of ,  is open in  and  equal to 

is a closed and compact subset of . Also  is contained in , because  and  are disjoint.

It follows that   being a closed subset of   is compact. Hence   is locally compact. (For

Hausdorff  spaces,  we  have  proved  that  there  are  several  equivalent  conditions  of  local

compactness. For each point if we produce a neighborhood with its closure compact, then the

space is a locally compact.)



So,  what  we  have  got  is  that  Alexanderoff's  compactification,  which  is  a  one-point

compactification, will be Hausdorff if we start with a Hausdorff and locally compact space

and that is the most important special case that we are going to study further. 
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So, I make this definiƟon the above compacƟficaƟon of X is called Alexandroff compacƟficaƟon. Note

that Alexanderoff's compacƟficaƟon is a spcific one-point compacƟficaƟon. In the literature, it  is

common pracƟce to refer to it as the one-point compacƟficaƟon of . Especially when  is locally

compact and Hausdorff space. See there are many one point compacƟficaƟons. 

The compacƟficaƟon  that  we have constructed  namely  Alexandroff is  a  special  one,  but  in  the

literature, whenever we start with a locally compact Hausdorff space,  people always refer to this

one  as  the  one  point  compacƟficaƟon.  So,  we  may  also  do  that  if  it  is  not  Alexanderoff's

compacƟficaƟon,  we  will  specifically  menƟon  it,  that  is  all.  So,  we  may  someƟmes  follow  this

common pracƟce alright, is that clear?

So,  let  us  stop  here.  We  shall  conƟnue  the  study  of  this  one  and  bring  the  new  concept  of

properness etc next Ɵme. Thank you. 


