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Hello,  welcome  to  NPTEL NOC an  introductory  course  on  Point  Set  Topology Part  II,

Module 14. We continue our study of paracompactness. The following result which gives

various characterization of paracompact spaces under additional condition of regularity is due

to Michael. We warn you about this condition of regularity. For some of the implications, this

may not be necessary, but there are other implication for which it will be necessary and there

are counter examples otherwise. We are not going that much deeper into it.

Basically, the presentation that I have taken is close to what you can see in Willard's book. If

you want more elaborate description of this paracompactness with more characterization then

you can have a look at Kelley's book. Whatever we are doing today is part of it. We will be

using a part of this in the final solution of metrizability problem.
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So, we begin with a definition. A family of subsets of a topological space is called sigma-

locally finite if the family can be expressed as a countable union of sub families  each of

them is locally finite. Obviously, if something is locally finite already, then it is sigma-locally

finite.

(Refer Slide Time: 02:17)

So, here is the theorem that we want to go through today. Let  be a regular space. Then the

following conditions are equivalent. 

(a)  is paracompact.

(b) Every open cover for  has a sigma-locally finite open refinement.



(c) Every open cover of  has locally finite refinement.

(d) The last statement here is: every open cover for  has locally finite closed refinement.
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So, let  us go through these proofs  quickly.  (a)  implies (b) is  very obvious because   is

paracompact  implies every  open cover  has a locally finite open refinement,  locally  finite

already implies sigma-locally finite as we have pointed out earlier. So, (a)  implies (b)  is

obvious. 

(b) implies (c): We start with the condition that every open cover of  has a sigma locally

finite open refinement. And then we want to produce a locally finite refinement.



So, this is an improvement. Remember that we have not put openness here. So, we will not be

achieving  openness  in  this  step.  So,  we  are  not  actually  proving  paracompactness,  but

something seemingly weaker here. So, let us see how to prove that. Start with an open cover

 for , and let  be an open refinement of it such that it is countable union of 's where

each  is locally finite.

So, sigma locally finite open refinement is there for you. So, start with an open cover which

admits a sigma locally finite open refinement. Put  equal to the union of all the members

of . Then, as  ranges over the natural numbers the collection of all ’s will form an open

cover for  because this  is an open cover.

Now, we are defining  equal to  minus the union of all the previous 's,  ranges from

 to . This is an open subset, I am subtracting an open subset from an open subset so that

will not give an open subset;   will not be an open subset in general, unless something

additional condition is given, such as  are also closed and so on. 

Clearly what is true is that this   which is a collection of all  's is a refinement of 

because each  is contained inside .

And refinement is fine, but when you have a cover, ’s for a cover for , so I have to prove

that  is also a cover for . For each  inside , let  denote the smallest number or you

can say the first number  such that  is inside . So,  is inside . Then  will be inside

An also because it is not in any of these 's. for .  So,  will not get deleted. So, it is

inside  and it is not getting deleted.  Hence  is a cover. 

So, now what we have got is  is a cover and it is refinement of .

Also, now you look at  which is a neighborhood of . It will not meet any  for 

because  gets deleted from . So,  will not intersect   for  . This means

that  this  family is  locally  finite.  So,  we have got  a  locally finite  cover  but  this  is  not  a

refinement of . I want to get a refinement of , these are somewhat larger.
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So, here is what you have to do. Put  equal the set of all , where  belongs to .

So, everything is now happening inside . So, you take An intersect with each member of

, put them in  . Then you take   to be the union of all these  's,   ranging over the

natural numbers. 

Given any   in  , if   is chosen as before, namely the first   for which  belongs to  

remember that, then we have shown that  is inside .

Also, this implies  is inside  which in turn implies  is inside some , for  in . It is

already in , it must be in some  here. So, it will be the intersection, and that intersection

is in . Therefore,  is a cover for . 



So, this  is now written as a countable union of this 's and this is a cover. Still there is no

openness here. So,  is refinement of . because each element of  is looks like  and

hence contained in  .   is  the refinement  of   and   is  the refinement of  ,  so   is  a

refinement of . All that remains to see now is that this  is sigma-locally finite.
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Once again, we note that given  inside ,  if  is chosen as before, once again I repeat

what is ,  is the smallest number  such that  is inside . So, I am now writing  as .

This   is a neighborhood of   because   belongs   and   is open.   does not meet

members of , for .  may intersect only members of . If they are in

 and so on, it will not intersect them. 



Now, for each  ,  , up to   what happens? Each   is locally finite because they are sub

families  of  .  Since  each   is  locally  finite  at  least.  So,  for  each  fixed  ,  there  exists

neighborhoods  of  which meets only finitely many members of . 

Now, you look at the intersection of all these  as  ranges  to  and  also.  will cut off

things from  onwards and this intersection will have the property that it will meet only

finitely many members from each of  and hence, totally, it will be only finitely

many members of the . So, therefore, this  is locally finite. 

So, some proof here is needed from sigma local finiteness to local finiteness, but the prize we

have paid is that, we are not bothered to get members of the family to be open. Now, we have

to improve on that. So, in the next step, we will do that. 
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Now take up the proof of (c) implies (d). Starting with locally finite refinement, we want to

get locally finite closed refinement. And from closed refinement finally, ((d) implies (a)) we

will get open refinements, that is paracompactness. So, that is the idea. So, now, let us prove

(c) implies (d). So, let  be any open cover. Regularity comes here now. By regularity, for

each  belongs to  we choose  in  and then an open set  such that  is in  and  is

contained in .

In particular, if you take the family   of all  's as   varies over  , this is a shrink of  ,

From hypothesis (c), we get a locally finite refinement  of . Then from lemma 3, I really

want this lemma 3, the family of all closure of  as  belongs to  is locally finite. If you

have a locally finite family of subsets, then their closure is also locally finite, this was the

lemma. In fact that lemma says more things.

In fact,  union of arbitrary families  of closed subsets  here,  closures of here will  be again

closed that is the second part here. So, this we have proven, you have used it elsewhere also.

So, these closures are locally finite. So, clearly it is a refinement of   because each   are

contained inside   for all  . So, and  will be contained inside some  which in turn is

contained in . So, it is a refinement of  as well. So, that completes the proof of (c) implies

(d).
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So, let us finally take the proof of (d) implies (a). Given any open cover, from existence of

closed  locally  finite  refinements,  we  are  now proving  that  there  is  a  locally  finite  open

refinement. So, that will be paracompactness. So, start with any open cover  and a locally

finite closed refinement  of . We are going to produce an open refinement of  now, so

you can as well assume to begin with that  itself is a locally finite closed covering. But we

are doing that now).

This  means that  for  each  ,  there  exists  a  neighborhood   of   which  meets  only

finitely many members of . Now, there exists locally finite closed refinement  of this cover

namely . 



I repeat.  So, starting with an arbitrary  open cover  ,  we pass on to  locally finite  closed

refinement . The local finiteness of this cover , gives an open cover  of  each of whose

members meet only finitely many members of  .  And once again we pass onto a closed

locally finite refinement  of .   

It follows that each   belonging to   meets only finitely many members of  . For each  

inside , select  inside  such that  is contained inside .

Remember this   was an open cover with which we started and  is a refinement. Put  

(this is just a notation) equal to  (this is an open subset)  setminus union of all the members

of  which do not intersect . So, what I am doing here is that I am taking this  and I am

fattening it inside .

See member of  are closed, it is a locally finite family it follows from the lemma 3.3. that

 is an open subset.

Starting with  , you got a shrink  , which is a closed refinement. Now, you are going to

expand them, using yet another, very special closed cover. How do I expand, I expand it

inside  by throwing away a closed set from .

What is the closed set? It is union of all those closed sets  inside , which do not meet .

Because you do not want to throw away points of , that is all. Whatever you have thrown

away, they does not intersect , so the part of  inside  is kept as it is. Since, this is locally

finite family and they are closed, arbitrary union of such closed set is closed this again use

this lemma 3.3, used here.

So,   minus this set is an open subset. So, each   is a fattening of   to an open subset.

Moreover,  they  are  inside  .  That  means  they  are  refinements  of  .  This  family

 is a cover for  because  is a cover for . It is a refinement of . So,

there is lots of hope with this family. We will show that  is locally finite also and that will

complete the proof that (d) implies (a). 

Again use the fact that  is locally finite. Given any , we can find a neighborhood 

of  which intersects finitely many members, say,  of . Since  is a cover, it

follows that this neighborhood   must be contained in the union of those members of  

which intersect it, namely.   is contained in the union of   range to   to   of  . Other



members do not intersect, so they are not needed to cover any element of . But all of them

together has to cover . Therefore,  is contained inside union of  range to  to  of . 
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You want to finally prove that  is locally finite.

Take a member of  , say,  . Suppose   intersects   is non-empty. But   contained

inside this union, therefore, one of the  must be non-empty. For all ,  cannot

be empty. So for several of them it may be non empty, that does not matter. For at least one ,

we have  is non-empty.

Look at this definition of  ,   is non-empty means   is not here, not here means

what,  itself is non-empty. So,  is non-empty implies that  itself is non-



empty. So,   meets only finitely many members of , that is how we have constructed  ,

right from the beginning, using local finiteness of .

It follows that  is empty for all but finitely many members of . Given , once

we have  , we get finitely many members   of  , each of these   will give you finite

members of , only these members can meet . Therefore, there will be only finitely many

members of  , and only the corresponding members of   can meet  . Therefore   is

locally finite. So, this completes the proof of theorem of Michael.
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As  an  immediate  consequence,  we  get  a  stronger  version  of  this  theorem  3.6  that  we

approved. Namely, if you have a locally compact of Hausdroff space, which is Lindelof, then

it is paracompact. Locally compactness automatically implies regularity. Therefore, regular



Lindelof space is paracompact. It is a stronger theorem now. How do you get this one? Every

open cover has a countable sub cover which is automatically sigma-locally finite.

A countable family you can write  it  as countable union of singleton open sets,  singleton

families are automatically locally finite. So, using this criterion, once you have regularity

sigma-locally finite refinement or the first thing here,  and  here, every locally finite open

refinement that will give you  is paracompact. So, easy proof of this one, you can directly

prove this one also, things will not be all that easy. I mean, much easier than what we have

done already.
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Here is a ready-made example of a sigma locally finite refinement. So far we have defined

but we have not given an example. So, I want to give an example. Consider the family  

which we met in the proof of theorem 3.21. Namely, while proving that a pseudo metric

space is paracompact. There we have actually proved that the family  is sigma-discrete.

Remember  sigma-discrete  means  what,  it  is  a  countable  union of  sub families,  each  sub

family is discrete, i.e., for each point there will be a neighborhood which will intersect only

one of the members. So that is discreteness, sigma discreteness means that it is a countable

union of such discrete families, that is what we have done. So, sigma discrete is automatically

sigma locally finite. So, we have such readymade examples there.

So,  sigma  locally  finiteness  is  slightly  more  general  than  sigma  discreetness,  sigma

discreetness is a very strong condition. Therefore, when you come up to several steps, at step



(xi),  if  we  use  theorem 3.26  of  Michael,  you  do  not  have  to  go  further  at  all,  because

immediately you can conclude that it is paracompact. Whereas, there we have to work harder.

Because we wanted to  have  an independent  proof of  paracompactness  for  pseudo metric

spaces, that is all.

Finally, the results of Michael are based on experience which we one gets while studying

metrics spaces. So, if you dig deeper into them, you get better and better theorems, that is all.

So, let us stop here. And we shall meet next time with other notions of compactness, a new

chapter. Thank you.


