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Hello, welcome to NPTEL NOC course on Point Set Topology Part II Module 13. We shall

continue our study of paracompactness. For subspaces of , there is a result which says that

every open cover has a subordinate partition of unity consisting of smooth functions. The

word smooth will not have any meaning when you are studying arbitrary topological spaces

and so members of a partition of unity for them are merely continuous functions.

Inside   such a thing is  possible.  And what is the additional thing that we have to do?

namely,  on every disc you can have  what is  called  a  bump function which  is  a  smooth

function with some additional properties.  For more,  you can see this reference here.  The

second thing is the local compactness of , in a very special way, namely, the closed discs

themselves are compact. So, if you carefully study the proof that we have given earlier, then

we can get a similar result for any metric space with the help of decomposition of any open

set into a countable union of increasing disc-like open sets. What I mean to say is that the

local compactness is not all that necessary here. So, something else will come to help namely,

the metric property and that is what we are going to do. For more general results, you may

consult again Kelley's book. So, I will do the bare minimum here to expose you to the ideas

behind some results. This course is not meant to be concise or comprehensive.
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Every pseudo metric space is paracompact. So, this is a big theorem now. You have to have

some patience. We will develop the proof of this result slowly, and the development itself is

quite educative. So, first of all, let us have some notation here. 

For every non empty subset  of a pseudo metric space , for each positive integer , let

us have a notation:  is the set of all  such that distance of  from  is bigger than

. 

A may be any non empty subset of . You take the complement and from there, the distance

must be at least , automatically these are subsets of , may be empty. So, one thing very

easy to see is that using triangle inequality, distance between   and   will be bigger

than equal to  which is equal to  (with the convention that the distance

is infinite if one of the two sets is empty).

So, I again leave verifying this elementary thing as an exercise to you.
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Note that   is  contained in   (that  is obviously true always,  but we also have)   is

contained inside . So, already we have these is nested subsets. Only thing is that these

’s may not be compact or even non empty. However,  we have these increasing phenomena

 contained inside  contained inside  contained inside .

And each   is open, so that is because in this condition we have strict inequality, bigger

than . So, closure of  will be given by `bigger than or equal to'. That is all. So, that is

the reason why you have these are open subsets. 

Moreover, if  itself is open then and then only  will be the union of all the .

What we have proved earlier was that when you have locally compact, Lindelof space then

every open subset  can be written like this with each   compact and so on. That is  not

exactly what we have here, but something of that which you have saved here, namely, with

the use of the pseudo-metric, we were able to write every open set as a countable union of

open sets,  with this property  contained .

So, that is what I meant by writing every open set as a union of disc-like open sets. They are

nested very strongly in the sense that the closure itself is contained inside . So, these are

just notations. Now, you have to remember this one for the rest of the proof.
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Let now  be an open cover for . We want to extract a locally finite open refinement that is

our purpose finally. Choose a well order on . (So, here again, we have use axiom of choice

equivalently, the well-ordering principle. Every set can be well ordered.) For each  and

for each  inside , let us introduce another notation.

Let  be defined as in (i), there is no change,  is got by replacing  by  in (i). But I am

going to give you, namely,  is the subset of  wherein I have thrown away something, this

is a set theoretic complement, set theoretic minus. That some thing is the interior of union of

all ’'s, where  occurs before , in the well ordering of . We have put a well order on

. So take all the initial elements  to  and take the corresponding  portion, (not the

whole of ) then take their union (  is fixed,  is varying), take the interior of this union and

throw it away from  to get . 

So, here is a picture of  and .  is the given one this  occurring before . Suppose 

was the first one and  was the second one in  , with respect to the well order. So, if you

look at , there is nothing before that  and hence nothing is thrown out of . So,  start

will be full . But for , what will happen? I will have to throw away ,  is before  and

so  has to be thrown away from . So that is . Only this part.

Because of the definition of  and , if you take any element of , and any element of

, the distance between them will be at least one-fourth. So, this is shown in this picture. So,

why we are subtracting some portions of earlier elements is illustrated, in the simplest case,

by this picture I have shown.



So, in general,  you have to subtract   for all   which occur before  . The well order

could be any arbitrary one, does not matter, but fixed once for all.
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Then  is the closed subset of  contained inside . So, why it is a subset? What I have

said, deleted some open subset that is all. You see interior of something whatever it is, if you

delete an open subset it will be a closed subset of the original set. So, that is what it is and it

is a subset  and is contained inside . 

If   and   are  not  equal,  if  they are different  distinct elements  of  ,  then   is  inside

 or   is  in  ,  depending on whether   is  before   or   is  before  .

Because if  is before ,  will get subtracted from  or the other way round.  So, that is

from the definition. Therefore, in either case what happens is from this general remark (ii)

here, that the distance between  and  is bigger than , which I have shown you

in this picture, what happens is that the distance between  and  is always bigger than or

equal to .

So, in this picture   was an equal to  , so it is one-fourth. So, you do not have to do any

pictures at all if you follow the logic here. Step by step, for each step get a very small picture

in your mind. After that, you have to just use whatever you have proved before. So, if you use

property (ii) this will be obvious. 

The next thing is that each  belongs to  for some  and some  in .

First of all,  belongs to some  because  is a cover for . But once it belongs to some 

and from the complement of , its distance will be positive. So, there will be  such that 

will smaller than this distance and hence  will be in . So, first you choose  such that  is



inside  and then since  is open and we have union of all  is equal to ,  must be inside

one of the 's.
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We now introduce two more notation,  ... (You may be already bored!) So first you had 

and then  here. Now,  is the set of all  in  such that distance between  and  is less

than ; and  is the set of all  in , such that distance between  and  is less than

or equal to . So, both are enlargements of . pay attention to the inequalities, the first

one is strict one. So, Each  is open and  is closed.

And   is  contained inside  .  Once again,  the same property (ii)  will  tell  you that  the

distance between  and  is bigger than or equal to  for every distinct  inside .



Indeed, this time, you can directly use the (v) property here, that distance between   and

 is bigger than equal to .

Similarly, you can talk about  , this   also. Though that will not be needed in the final

proof, but will play some auxiliary roll, so, I have kept it. So, the distance between  and 

is bigger than equal to . This hold no matter  occurs first or  occurs first.
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Next, for each natural number , put  equal to this collection of all  where  ranges over

all of . So, each member of this family is an open subset. Take  to be the union of all 's.

So, we have written  as a countable union of these sub families. What are the property of ?

(x) It is an open cover for ; not the individual 's, but when you take all of them, namely,

, that is an open cover for  and

(xi)  is a refinement of .

So, how to check this (x)? This can be checked as in the case (vi). What we have done there

is that each  belongs to some . Similarly, we want to say that each  belongs to some .

For that choose the first  so that  is inside . Then  will be inside some  for some large

. But then it  is also in   because it  does not belong to any  , which comes before  ,

which you have subtracted from  to get .

 But why it is in ? Since  is contained inside , we are done. Indeed, this also proves

that  itself is in  also because  is contained inside  also. Remember that  and 

are actually fattening of  . (All those points which are at a distance smaller than a some

positive number from a given set is called a fattening of that set.) Note that   and  are

cutting downs from  whereas  and  are fattening of . 
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(xi) And  is a refinement of .   is a subset of , both are subsets of . Therefore,  

which is by definition, the set of all those points which are at a distance less than  

from , is contained inside the set of all those points which are at a distance less than

from  also. This latter set is definitely contained in , by triangle inequlatiy, so that 

is inside .

So, finally, I will have one more notation here: Let  equal to  minus union of all , 

belong to  and . So, this is where the twiddles are used. This is the only place where

we need them. 

What we are doing now? We do not want full ’s. So, I am chucking away some portion of

them, namely these are all closed subsets now, take the union of all these  ’s where   is

arbitrary in , but integer  now. So, you throw away that part. Note that is the family

 is a locally finite family of closed sets.

Therefore, it follows that each  is open. Remember this result about locally finite family of

closed sets. When you take their union, it is still a closed set. So, this whole thing is closed

set,  the complement will be an open subset now.  ’s are open subset. So,   are open

subsets.

Student 1: I have question. Why this family is locally finite?

Professor Anant: Because we had taken union of only finitely many of them. For each fixed

, by property (v) the family   is locally finite. If you take any two different

members, they are not only disjoint, the distance between them is bigger than or equal to a



positive constant viz., . Therefore, at any point  if take an open ball or radius less that

, then the ball may intersect at most one member of this family.

Student 1: Sir, I have one more question here. So, starting with the open cover, first we made

, a collection of which is also a cover for . But that was not open.

Professor Anant: Yes.

Student 1: That is why you consider that .

Professor Anant: Right, right, they are not they are closed subsets actually. Yeah?

Student 1: Yeah. And so, this  collection was open refinement, but that may not be locally

finite. That is why you are coming to , right?

Professor Anant: Yes, that is the precise reason. Subtracting these things,  that will make

 locally finite we will see that, okay? Yeah? So, first of all,  is open now, you see we

did not even stop it   also. So, first of all, these are open itself you have to look for that

these things are locally finite, that is fine, . But they are closed things. So now, these are

open subsets, first thing.
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So, what we want to do is that take  to be the collection of all subsets of the form , 

ranges over ,  ranges over natural numbers, okay? That is like take all ’s is first with 

fixed and then taking the union over , you can say a double union. That is 



(xiii) a cover for , 

(xiv) it is an open refinement of  and 

(xv) is locally finite itself. (There is no need to say sigma locally finiteness here.) This  is

locally finite itself. 

So, we have to prove this, (xiii), (xiv) and (xv).
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So, say how do you prove (xiii) that  covers the whole of ? Given any  in , let  be the

first integer such that   belongs to  for some . Once it is in some  there will be some

positive integer  for which it belongs to . So, let us take  to be the first such integer. It

follows  is inside  itself, because all  which I have thrown out from  none of them

contain the point . So, it must be inside . So, that is the trick here. So, these things cover

.

(xiv)   it is an open refinement? We have already told that these members are open. Also

they are all subsets of of some  that is clear. 

(xv)  Why  it  is  locally  finite?  To  see  this,  one  notices  that   chosen  as  above  is  a

neighborhood of  and does not intersect any  for  , because these  would have

been subtracted from  to get . 

So, it does not intersect  for  . Therefore, if we choose , such that this

ball   is contained  . This possible because  ’s are open subsets. Then   may

intersect only one of the  for each  such that . it happens that it will intersect

only one of them. So, this completes the proof of a theorem.
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There is a remark here which is a bit deeper. So, I do not mind even if you do not understand

it in the first reading. So, but I will make this remark. A family  of subsets of a topological

space is called discrete family, if each  has a neighborhood which meets at most one

member of . If  is the countable union of subfamilies ’s where each  is discrete, then

 is called a sigma-discrete family. 

So, one of you asked this question. That is why this remark. It is even more relevant here

now. So,  why is  it  more  relevant?  What  happens  is,  you  see  this  condition  right  in  the

beginning distance between these two is bigger than . So, this  and , same  but

 and  are different elements of the same cover.

What happens to these sets? They are disjoint, not only that, this is stronger than just being

disjoint. Namely, I can take small open subsets around them for all of them simultaneously,



such that all these neighborhood are disjoint, because of this metric property, we are able to

do that one. Such a property can be made as an axiom in the general case. Then it is called

sigma-discrete or that is what I am trying to say here.

A family is discrete family if each point  belongs to  has a neighborhood which meets at

most one member of . You see, if the distance between as something positive each point , I

can take the ball of radius half of that distance whatever positive half that radius, then what I

get is that that open ball cannot intersect both of them that is all.

So, that is what we have achieved here, it is called sigma discrete if it is union of, countable

union of , where each  is discrete. So, that is why that  has come. When you fix , it is a

discrete family, you take the union it becomes a cover and so on, only countable union you

have to take. Such a thing is called sigma discrete. This family  itself may not be discrete.

That is one thing you have to understand, it is sigma discrete.

Properties (viii) and (ix) say that this   which we have constructed is sigma discrete open

refinement  of  .  So, in general,  what one does without assuming metric property?  You

would like to prove this one out of some other properties by making this definition sigma-

discreteness. We have not used this concept anywhere in the course. And so that is what I

want to say, if you prefer, you can simply ignore it for the time being. If you are interested

more, then you can look into Kelley's book.
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So, coming back to , we have remarked earlier that, due to the existence of certain smooth

functions, we get smooth partitions of unity subordinate to an open cover. Moreover, since



step one of the proof of 3.6 is valid for all open subsets of  , it follows that every open

subset of   is paracompact.  Indeed, it  is also true that every subspace of   is normal,

because it is a metric space.

But what is important here is that given an open cover for any subspace there is a smooth

partition of unity subordinate to that open cover, but functions are all defined on the entire of

, not on just that open subset. Thinking a little further along this line, you will be able to

prove the following theorem. 
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This I get it as a corollary to whatever we have done so far. All these remark is for getting

such a motivation from . Let  be a second countable, locally compact, Hausdroff space.



Then every closed subset of  is the precise zero set of a continuous real valued function on

. You can choose the codomain of this function to be , or any other closed interval.

Once you have this it follows that such a subset is a  set, because the precise zero set of a

continuous function is a   set. You can just write as the intersection of   as  

ranges over all positive integer. So, how do we prove this one? It is not difficult.
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Start with any  contained inside  closed subset. For each  in the complement, choose a

function   from   to   such that   and  . Consider the open cover

 for  .   being a closed subset of   is also second countable,

locally compact and .



Therefore, it is paracompact. So, there is a locally finite open refinement. Further by second

countability, you can get a countable subcover, it will be again a locally finite refinement. So,

we  get  a  countable  locally  finite  open  refinement   of  .  These   are  not

necessarily members of , but each of them is contained in some members of . 

So for each  , we shall choose   such that   is  contained in   and relabel  the

function by . So, define  now, from  to  (no index here,) equal to sum of

all 's, but divided by  each of them. After dividing , you take the sum.

So, go through this proof carefully again and again. Maybe three times it does not matter,

Each of these steps has a meaning there. 

Next time we will do some general results which seemingly come from nowhere. But the

motivation is here. If you know this one, you know where it is coming form. Thank you.


