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Hello, welcome to NPTEL NOC course on point-set-topology part 2. Today, we shall do

compactly generated spaces, further. Last time, I already told you that it is not easy to find

examples of spaces that are not compactly generated. So, now, we will see a lot of examples

of compactly generated spaces, they come from a wild spectrum, quite unexpectedly. So, let

us go through these things carefully. 
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Let   be  any  Hausdorff  topological  space.  We  are  deliberately  restricting  ourselves  to

Hausdorff spaces. If not, we actually can get many more examples but from practical point of

view, they are not much important. So, let us restrict ourselves to Hausdorff spaces. 

Then,  is in , if  satisfies the following limit-point-test condition, I am calling it a limit-

point-test condition, you will see why. So, I will just use the short form lpt. So, what is this

condition? 

Given any subset  of , and a point x inside ,  is a limit point of , (which I denoted by

 in , remember, we have introduced this notation, for the set of limit points of . It is

also called the derived set of ), if and only if, there exists a compact subset  of , such

that  is a limit point of . 

So, pay attention to the clause `there exist a compact subset'. And not `for every compact

subset', which will be totally incorrect. Given a point ,  the point is inside , if there

exist some , such that . This `if' part is easy and is always true. The `only if'

part  is  the real  extra  condition here.  Of course,  it  now becomes `if  and only if'.  That  is

important. So, if this condition is satisfied then,   is  , that is the lemma. This lemma

therefore gives you a nice sufficient condition. But this is not a criterion. This condition lpt

may not hold and yet  may be in . However, I do not know any example of a space in 

which does not satisfy this condition. I am sure that there are such examples, otherwise this

will not be stated like this. It would have been stated as a criterion. So, such an example may

be quite complicated. So, that is the story. 



So, let us go through the proof of this lemma. Let  be a subset such that  is closed for

every compact subset  of . Then, we have to show that  is closed in . That is what 

belonging to  means. 

So, to show that  is closed in , we take a point  and show that this  is inside 

itself. Then we are through, why? We know that if  is closed, then  must be inside .

That is easy. But also,   is inside   implies   is closed, because what are the closure

points of ? They are either points of , or there limit points of . Therefore, limit points of

 is contains inside , means  is contained inside . Therefore,  is equal to . 

So, I start with a point  inside  and I want to show that it is inside . Now, condition lpt

comes into picture.  is in  means there is a compact subset  of  such that  is inside

. But as soon as I take a compact subset ,  satisfies the condition that  is

closed in .  

So,  is a limit point of , but   is closed in  Therefore, it is closed in  also.

(Remember, we started with a Hausdorff space , and hence compact subsets of  are closed

in . This is why Hausdorffness is important here.)  Something is closed in , therefore, it is

closed in . Therefore, the limit point  is inside  and hence inside . 
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As a corollary, we have two classes of compactly generated spaces. What are they? 

(i) Any first countable space is compactly generated.

(ii) Any locally compact space is (that is of current interest to us)  also compactly generated.

In the back of my mind, I am also assuming that they are Hausdorff. A Hausdorff space 

will be in  if one of these two conditions is satisfied, viz., Hausdorff plus first countable or

Hausdorff plus locally compact. See two are completely diverse fields. We have also seen

something like this happening earlier. Metric spaces and any locally compact spaces are quite

different things, but both of them are Baire spaces. Now, here is another example, where-in

first countability of metric spaces and local compactness are coming together in a different

way. So, this is just for your observation and see every metric space is first countable. This

time, you do not have metric space, it is  first countability only. Local compactness and I

countability are completely different concepts, but both of them along with Hausdorffness

will give you compactly generatedness. Why? So, I have put this as a corollary. To prove it,

all that you have to do is to verify that both of them satisfy lpt, and then apply this lemma. 

So, how do you see that they are satisfying lpt? As soon as you are in a Hausdorff  first

countable space, a point is a limit point if and only if you have a sequence converging to that

point. Along with that sequence, take that point also. Suppose  converges to  , then take

the set of all  together with  is always a compact set. So, actually  will be a limit point of

that compact set. That verifies lpt. For local compactness, it is easier, because take a point 

belong to limit point of some set, there will be a neighbourhood around that point which is



compact. You do not have to go outside that neighbourhood at all to see whether it is a limit

point,  you  can  restrict  yourself  to  that  compact  set  already.  So,  local  compactness

immediately gives you that lpt, very easy, the first countability also gives you because of this

a sequence converging to a point union with the limit point is always compact set. 
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Not all subspaces of a compactly generated space are compactly generated. By this I mean

that, compactly generatedness is not hereditary. To see such an example, we have to wait a

little bit, it is not coming so easily. Right now, on the positive side, we have the following.

Take   belonging to  , Then every closed subspace of   is in  . That is,   weakly

hereditary,  in one sense only but  not  globally  weakly hereditary,  does not  hold for  open

subsets.  is on  every closed subspace is compactly generated. (Refer Slide Time: 11:26)



The proof is not very difficult.  be a closed subspace of ,  be a subset of  such that 

meets each compact set   of   inside a closed subset of  .  We want to show that,   is

actually  closed  in   from which  it  follows  that   is  closed  in  .  See,   is  compactly

generated   is a closed subspace, I want to show that   is compactly generated. So, what

should I do? Start with a subset  of  which has this property,  meets each compact subset

 of ,  in a closed subset of . From this I have to show that, this  is closed in , but I will

actually show the  is closed in . 

So, let  be a compact subset of . Since  is closed in ,  is a compact subset

of  .   is closed, so   will be a closed subset of the whole space. So, it is a closed

subset of a compact subset, and therefore a compact subset of   also.  Therefore,  ,

which is , because  is already a subspace of , is a closed in (= ), and

hence closed inside . Since this is true for all , and  is in , it follows that  is closed

in . 

Let us make a definition.
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We say a subset  of  is a regular subset, if for every  inside , there exist an open set 

in  , such that   belongs to   contained in the  ,   contained inside  . To begin with,

though we have used the usual notation for open set, there is no assumption that  should be

open. But however, this condition for every  is inside  is an open set  in . So,  belongs

to  which is contained inside , automatically says that any regular subset  has to be open.

Also, if  is a clopen set, that is closed and open, then it is automatically regular because we



can then take   equal to   for all  ,   belongs to  ,   contained inside   because   is

clopen, and  is . So a clopen set is regular. 

So, why the word `regular'  is used? Only because of the resemblance of this condition to

regularity. In that you have to be very careful. Note that being a regular subset neither implies

nor implied by the condition that under the subspace topology,  is regular space. So, these

two notions are quite different. For you can take  to be any singleton set in  which is not

an open set. There are plenty of subspaces, then  as a singleton space is already a regular

space, but not a regular subset, because it is not open inside . 

Similarly, you can start with any non-regular space , (you can allow it to be Hausdorff also,

and there are such spaces which you have seen) and then take  to be disjoint union of two

copies of . Then each copy of  will be open in  as well as closed. Therefore it will be

regular subset of . But as a space on its own, it will not be regular, because we started with

a non-regular space.  So, that these two examples should convince you that this is just an

adhoc definition. This is going towards what? to ensure that certain types of open subspaces

of a compactly generated space are again compactly generated. 

(Refer Slide Time: 17:13)

So, this is a theorem. Let  be a regular subset of a space . Then  is in  implies  is in

. Let  be a subset of  such that  meets each compact subset of  in a closed subset. In

order to show that   is closed in  , let   belong to  be a closure point of  . We want to

show that  is inside . 
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So, let  be an open subset of  such that  belongs to  which is contained in  contained

in . This is by the regularity of the regular subset . But once we have an open subset of the

whole space   containing  , this will imply that   is in the closure of   itself. That

means, it is contained inside the closure of  , because it  is the larger set, that is all.

Therefore, it suffices to show that  is closed in , so that  will be inside , but

 is contained inside . Our aim is to show that  is inside . 

Therefore,  we  have  come  to  the  point  of  showing  that   is  closed  inside  ,

everything is happening inside  . So, take a compact subset of  .  Then   is a

compact  and  it  is  contained  inside  .  Therefore  it  is  a  compact  subset  .  And  hence,

 is a closed subset of . This is from the hypothesis on . We have started

with a  which has this property. So, it is closed in  which is closed inside  itself. 

So,  is a closed subset of . But  is  and we have verified that for arbitrary 

,   is closed in . Therefore,  is closed in . That means its closure is itself.

Therefore  is in  and hence in , as required. 
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Before ending up today's lecture, let me give you one very important application of this one

in complex analysis. Why I say complex analysis? I do not know personally any application

of this in other analysis, but that does not mean that it is not applicable. So, as far as complex

analysis is concerned, I have used it and I know and I have taken this theorem from a very

famous book viz.,  Raghavan Narasimhan’s complex analysis of one variable. 

So, what does it say? It is a peculiar statement here, this kind of study we will do later on in

the course, in a different context altogether.

Right now, take a locally compact Hausdorff space , and a connected component  of 

which is compact. Given any open set  in  containing , there exists a set  such that 

is inside  contained inside , and  is both open and closed in . 

Think of this for the case when  is singleton. (Single point could be a component also. And,

single  point  is  automatically  compact).  What  does  it  mean?  This  means  inside  every

neighbourhood   of that point, we have another neighbourhood which is clopen set which

both open and closed. Not just an open neighbourhood whose closure is contained in . 

So, this is happening to every compact component of . So, I suspect that this will be useful

in all these complex dynamics also, not just complex analysis of one variable, wherein you

have to study Julia sets and such things. Let us see the proof. Proof is not all that easy at all.

Indeed, as a habbit, when I read a new result like this, I try to prove it myself. But with this

one, I could not prove it myself. 
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So, first consider the case when   itself is compact.  So, we are going step by step here.

Assume  itself is compact. That does not mean that it is connected, you will have to take a

component, it will be compact as well, fine. So, connected component are compact. For each

compact component something is happening, that is what we want to show. Let   be the

family of all   contained inside , such that  is contained inside ,  is both open and

closed. We do not know whether this family  is non-empty one. We have just taken  like

this. Let   be the intersection of all  members   of  .  Since each member   is  closed,

therefore  is closed. 

Clearly all members contain . Therefore, this  will contain . 

First, we shall prove the claim for  in a place of . So, we are trying to prove something for

, but we have taken a set slightly larger than , maybe very large, I do not know, but it

contains  .  So we shall  prove it  for  this  .   itself  is  not  assumed to  be connected  or

anything. We do not know that. But what we will show is that given any open neighbourhood

 of  , there exist a closed and open subset (like  ) containing   and inside set at open

subset . 

So, let  be an open subset of  containing . Then look at . It is contained in ,

which is the union of all ,  ranging over . This is by De Morgan law, because  is

the intersection of all 's. Now,  is compact, because  is open and  is compact. (So,

that is where this assumption that  is compact being used.) It follows that you have finitely

many  , such that   is contained inside the union of  ,   ranging

from  to .  



Now, take  to be the intersection of these finitely many 's. Finite intersection of clopen

sets is clopen. Again by DeMorgan law, this  contains  and contained in .

 So, we have already proved this for .  
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Now,  in  order  to  prove  the  property  for  ,  we  shall  actually  prove  that   is  .  So,

intersection of all such neighbourhoods is actually  is what we shall prove. This will follow

if  we  show  that   itself  is  connected.  Any  connected  subset  larger  than  a  connected

component  has  to  coincide  with  it.   is  a  component  of  .  So,  if  we show that   is

connected,  must be equal to . Alright? 

If possible, let  be the disjoint union of two closed subsets, non empty closed subsets,  and

 say.  Then  we  will  get  a  contradiction.   is  connected,  and  contained  in  the  union.

Therefore, it must be contained in one of them, only one of them. So,  is contained inside 

let us say. 

So, we shall actually prove that  is empty. So, we are assuming that  disjoint union  is ,

and we want to show that  is empty, under the assumption that  is inside , alright? 
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Now, use the fact that  is Hausdorff. Since  and  are disjoint compact subspaces, there

exist disjoint open subsets  and  in  such that,  is inside ,  is inside . Remember

this theorem, in a Hausdorff space two disjoint compact subsets can be separated by open

subsets. This we have proved, first by proving it for a compact set and point outside, and then

improving this for  two disjoint  compact sets.  I  am using that theorem here.   and   are

disjoint closed subsets of , therefore they are compact. (So again, I am using the hypothesis

that  is compact here, alright.) 

So we get two disjoint open subsets   and   around   and   respectively. But now   is

contained inside . Therefore, there exist  , which is both open and closed in , and

such that  is contained in  which contained , because the latter is an open subset. 

Clearly,   is open, because   is open and   is open. Also,   is  ,

hence it  is closed also, because   is closed and   is open so   is closed. Since   is

contained inside , and  is contained inside , we have  is contained inside . 

Therefore,  , which is both open and closed and contains   is a member of  . This

means that  is contained is , which is contained inside , but  is , therefore 

be must be empty. 
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Thus,  we have  shown that   itself  is L,  and   have  satisfies  the  said  property.  So,  

satisfies this property under the assumption that  is compact. So, that completes the case 1. 

The general case is much simpler now.  is locally compact, and  is compact. Therefore,

there  exists  a  compact  neighbourhood   of   in  .  Each  point  of   has  a  compact

neighbourhood, you take the union that will be a cover . You can extract a finite cover out

of it. Their union will give you a compact neighbourhood. Compact neighbourhood means

what? An open subset containing   with its closure compact, that much you can say. So,

there exists a compact neighbourhood  of  inside . 

Let  be the connected component of  containing . (  is connected remember that. So

 is contained in one of the components of . So, take  to be the connected component



of  containing . But then  is connected subset of  as well. Since  is a component of

, this implies . 

So, what I am saying is that in passing from  to , a smaller space, the advantage is now

that  is compact. And this is what you have to see, viz.,  is a component of  and hence

 is equal to   that is all. Now, let   be an open subset of  , such that   is contained

inside in . This  is a neighbourhood of , there is an open subset  of  such that  is

contained in  which is contained in .

So, by case one applied to , because  is compact, there exist  such that  is contained

in   which  is  contained in   and   is  both open  and  closed  inside  .  Everything  is

happening in . Since  is closed in , see  is compact and hence closed in ,  is also

closed in  because  is closed in . Since  is also open in , which is open in ,  is

open also in . See, for openness of  in , you cannot go via , but via  you can see

that this  must be open inside . 

Therefore,  the  proof  of  theorem is  complete.  Later  on,  when we are studying one  point

compactification, I will give you some relevance of this result to compactifications of . In

complex  analysis,  ,  the  1-pt  compactification  of  that  is  nothing  but  the  extended

complex plane, and that is how it is important in complex analysis. Thank you.


