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Welcome to NPTEL NOC course on Point-Set-Topology part II. This is module 1/ chapter 1

on  differential  calculus  on  Banach  spaces.  In  this  introductory  chapter  we  shall  present

statements  and  proofs  of  implicit  function  theorem  and  inverse  function  theorem  in

differential Calculus. 

Since we have developed enough background on Banach spaces in part-I, we plan to do this

directly for Banach spaces rather than for . Usually for , one can prove inverse function

theorem  first,  and  then  prove  implicit  function  theorem  which  becomes  a  little  more

transparent. In the case of general Banach spaces such a method is not possible. We have to

first prove the implicit function theorem and then deduce inverse function theorem. 

One of the key factors which needs to be sharpened in the case of Banach spaces is the so-

called weak mean value theorem. In the case of  , because it has a rich structure namely

Hilbert’s structure the proof is much simpler. Here the proof a uses little deeper result in

analysis viz., what are called Dini derivatives. 

If  you  have  some  difficulty  in  understanding  Banach  spaces  you  can  just  replace  all

occurrence of  Banach spaces by   and just  think of   and try  to follow the material.

Afterwards you can fill-in your Banach spaces once you learn Banach spaces thoroughly. 
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Let me recall some notations which I have already introduced to you. These notations will not

be used elsewhere during this course. So, they are kind of frozen especially for this chapter.

These are all standard ones of course, the Euler fonts  and  in addition, I was also

using this Euler font , for close interval , and  for the closed unit disc,  for the unit

sphere. And finally,   and   come very rarely but are standard notations. I do not use

them for any other thing. 

Sometimes I need the open interval  for which I will use this (Euler font) . Most

important one is that often I have to deal with both real and complex fields simultaneously.

So, in that case I will use this notation (Euler font) . In the context of a special case, we will

mention which one is being used, otherwise this  will be either the field of  real numbers or

complex numbers. 
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So, let me begin with a modification of the contraction mapping theorem that we have proved

in part-I. A modification which is an extension actually. There, we had proved it for one map.

Here we will prove it for a family of maps that is the important difference. So, start with a

complete metric space  and let  be any topological space. Take a function on 

to  which is continuous, so that there is a real number between  and , strictly between 

and  such that this property holds: the distance between  and  is less than or

equal to  times the distance between  and  for all  and for all . So, this

is some kind of uniform condition uniform-continuity condition.
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If this condition holds then we have a conclusion. What is the conclusion? For each ,

there  exists  the  unique   such  that  .  You  can  think  of  this  as



, by replacing   by   which is a unique point of  . This   will be called as

 because it is a unique one and depends on .

So, thus we get an assignment from  to  , a function  . This   has the property that the

distance  between   and   is  less  than  or  equal  to   times

 That same  here. This is a technical result that will be very helpful. In

particular you can immediately see that phi is continuous. 

This distance between  and  is dominated by this one on the right hand side.  So, if

 and   can be controlled then this can be controlled therefore this left-hand side can be

controlled is the conclusion here. If you forget about this capital  here (by taking it to be a

single point) and look at just a single function from  to , one single function then we have

proved this statement viz., there is only part (a) namely there is a unique point which is the

fixed point of the contraction mapping. So, the additional statement (b) here is there when

you  have  a  family  of  functions  indexed  by  the  space  ,  which  satisfies  this  `uniform

continuity condition. We get a continuous function out of it. It is stronger than saying just

continuous So, that property we have put here and we will use this one once again. So, let us

go through the proof of this one all right?
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First of all, just recall the proof in the case of when there is a single function only. For each

,  let  us  look  at   one  single  function   to   given  by  .  The  

coordinate is fixed so you get one single function. For this let us say what is the proof of this

theorem which we have done already. That is if  is a singleton space, then this theorem is

nothing but the ordinary contraction mapping principle. 

So, let us recall the proof. For simplicity we shall use the same notation  for the function 

restricted to  namely  in this special case. This singleton space , so in this special

case let us first prove the uniqueness. Let  and  be two points such that  and

Then distance between   and   will be distance between   and   because   is

 and  is . But this is less than  times the distance between  and . Now  is

suppressed here, that is all.  Distance between   and  is less than   times the distance

between   and  . This is condition 1. So, condition 1 will tell you that we have distance

between  and  is less than or equal to a fraction of the same distance and this is possible

only if this this real number is . That means that  is . This is the way the uniqueness part

was proved and we have just recalled it here. 
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For the existence part what we do? We follow the iteration method. Start with any point  .

Inductively define   and so on , which is nothing but 

operating -times on , i.e.,  

We claim that the sequence got by iterating the powers of   on   namely, this   is a

Cauchy sequence. Then we will appeal to the fact that the metric space is complete, to get a

limit of the this sequence. That limit, if we denote by , then we will show that this  is the

fixed-point of , i.e., . So, how does one prove that this is a Cauchy sequence? Let

us for the sake of simplicity put  equal to the distance between  and . 

What is ?  is . If  is already , then this distance will be . But then we have

already solved this problem we do not have to go any further. Never mind. So   may be  

never mind. But whatever we have if  is not  namely  is not equal to , then only we



have to iterate. So, we keep iterating. So do not worry about it right now whether it is equal to

the old one or not.  If it is equal to the old one by chance, then you can stop there. That is no

problem. Anyway,  and  which is less than or equal

to  

Now, you repeat this one:  less than or equal to  and so on. Distance between 

and  will be less than or equal to . Therefore, assuming this inequality, you repeat

once more to get distance from  and  is less than or equal to goes to . So same

formula is there now.

Therefore,  to  compute  the  distance  between  any   and   now,  I  use  the  triangle

inequality m times. So, I go for   to  , then   to  ;   to   etc. take all

these distances, add them up put a less than equal to sign, summation from   to   of

distance between  and . But just now we have proved this formula this distance is

 is equal to  times the summation from  to  of .  

What are these? These are nothing partial sums of the series   which is a

geometric series,  where   is between   and  . So now summation   is a geometric series

which converges to . So, that explains why we have got this  here in this

inequality.

So,  continuing  with  the  proof  of  this  Cauchy  sequence;  in  particular  the  partial  sums

summation from  to  of  is a Cauchy sequence. Therefore  is also a Cauchy sequence.

It converges because  is a complete metric space.

After that if you apply limit of the sequence  is the same thing as limit of the sequence

 which is the same as the sequence  is a continuous function. So, I can take

out  from the limit and hence I get .
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So, now if you take he limit as  tending to infinity in the inequality (2) on the LHS you get

 What is the limit of this summation on the right? What you get is distance of  and

 is less than equal to  divided by , the partial sums from the this is the remainder

after in terms. 
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So, for all n greater than equal to 1 this is true. So, now we copy the same thing by taking the

variable  also. The idea of the proof is exactly the same, there is no change at all.

Returning to general case, since the fixed-point  of  depends upon , we are changing its

notation: for each , I am getting a fixed point which I will denote by .



Also, while proving the existence, this  which we have fixed as the first distance between 

and  earlier, this will now depend upon  because this is now  is the distance between 

and   So, let us denote this , let us replace  by  in the formula (3).

We can then rewrite this (3) as distance between... you see this now  is  and so the

distance between  and (which is the fixed point of  ) is less than or equal to

. This is independent of , the constant  is independent of  remember that.

This holds for every , for all  and . 
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So, now given  and  in , put  and  in the above inequality to get

this this one. Here,   so this will  be  ,  .

That is we have  is less than or equal to . 



So, this is what we wanted to prove this is a conclusion of the part of theorem. Note that in

this notation, we have  and similarly,   and so on,

 for all .

By  continuity  of  ,  given  ,  we  can  choose  a  neighborhood   of  this  point

 in  such that the distance between  and  is less than  for

all  . (Formula (5).) This is just by continuity of   from  to  . The

point  is taken to  by . So a neighbourhood will this point will be taken to a

neighbourhood of . 

Because, in the domain you have  which is an arbitrary space cross  which is of course a

metric  space,  so  I  am  writing  the  neighborhood  as   instead  of  choosing  ball

neighborhoods  and  so  on  of  the  point  .  This  is  inside  .  This  entire

neighborhood is taken  inside this  neighborhood of  by , and I am making  to be

. 

So, this is you can choose   here and then write   is   no problem. The distance

between  and any  as soon as  and  are inside this neighborhood is less than this

one. So, this is continuity of   therefore now using the continuity of   here for  , it

follows  that  distance between   and   is   times this  one but  then  

cancels out you are left with . Just to cancel out  factor, I had chosen  that way here

above. That is all. So, this is last part (b). This helps to derive the continuity of the function

phi that we have obtained  as a solution function for the fixed point. 
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So,  I  am  repeating  condition  (1)  may  be  referred  to  as  uniform  contraction  mapping

condition. Why? Because in the right-hand side here, the choice of  does not depend upon 

at all, for all , you have this the same . That is why I told you that this is like uniform

Lipchitz. So, the theorem itself can be called as uniform contraction mapping.

Any questions? 
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Let us now recall a few basic facts from normed-linear spaces and Banach spaces and so on.

Suppose you have two normed linear spaces  and  and  from  to  is a linear map.

Then the following three conditions are equivalent. (Remember on an infinite dimensional

vector space, a linear map may not be continuous. So, therefore these things become non-

vacuous non trivial statements): 

(1)  is continuous at .

(2) There exists  positive such that norm of  is less than  for all .

(3)  is continuous uniformly on the whole of .



So, all these three are equivalent conditions. None of them may be true in general. When  is

finite dimensional this will be automatically true for all linear functions. 

So, let me just recall this because this is so fundamental: Proof of  (1) implies (2). That means

first you assume that   is continuous at one single point  . (By the way you can assume

continuity at any other point also it is equivalent to condition (1). I could have added that

condition also here  in  the  list.  Think about  it  take  it  as  an  exercise.)  So,  put  .  By

continuity of   at  , we get a   positive such that   implies  . Excellent.

This for just taking .

Now you take  to be any non-zero vector then by linearlity of , we have norm of  is

equal to , I am writing  times  here,  of that and then I have to compensate for

this factor which comes out and cancels out with this one. So, this all this entire thing is just

norm of  . Now the multiplication factor   is taken inside here, the inverse of the

same factor is multiplied outside here. 

What is the idea of this one? Now, what is the norm of the term inside the bracket here? It is

less than or equal to  and so, I can apply this inequality (1). It means that this part is less than

or equal to . So, for all , we have . If , then the left hand side 

and hence the inequality is still valid. So, for all  this is true actually but for writing down

this proof I have to assume  is different from , because I have to divide by norm x here.

So, we can take . Then what do I get? I get , so that is the conclusion

of (2). As soon as you have such a uniform lambda uniform continuity follows on the whole

of :   for all  . So, if  , which you have

to choose this appropriately viz., , that is all,  so that (2) implies (3) is follows. Finally, (3)

implies (1) is obvious because this is now actually continuous on the whole of  ,  and it

contains  also. 
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Now, we make a definition here. Take   and   to be any two norm linear spaces, take a

linear map   from   to  . We will call it bounded (or a continuous) linear map if there

exists  positive such that  for every . 

So, such a   is called a bounded linear map. This is a standard terminology in functional

analysis. I cannot help it, it is not the standard meaning of bounded functions. For functions

which take values in a metric space, boundedness has a different meaning altogether. This

terminology is a bit  unfortunate but  you will  get  used to it  when you are doing function

analysis. Or instead of that you say continuous linear map. 

For a bounded linear map  from  to , there is something called the operator norm. We

have  introduced  this  one  in  part  I  itself.  We  have  in  fact  studied  the  Banach  space  of

continuous functions on a metric space and so on. So, I am just recalling this operator norm

here.  norm  is defined to be the supremum of all  where . That means that 

is varying on the unit sphere in the domain. Domain is ,  must be inside  of course here. 

We shall denote the space of all bounded linear maps  from  to  by this . We

will just read it  , which is clearly a vector space. What you have to do now? You

have to show that if  and  are bounded linear, then  is also bounded linear. Linearity is

clear. Similarly, you have to show that  is also bounded. That will show that  is a

vector space. 



So, together with the operator norm as we have defined here it becomes a norm linear space.

This norm has the standard properties:  is always, you know, is bigger than equal to ; it

is  if and only if  is identically . And  is . And the triangle inequality in terms

of addition, viz., . So, these are the conditions which make a function

into a norm. The following results about operator norm is a special thing. I want to tell you

that these are not a general properties of a norm. As such they all very easy to derive.
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What are these? I have summed it up in this lemma. We will keep using this again and again.

So, let us go through it carefully that you understand this one completely. Take vector spaces,

 they  are  all  norm  linear  spaces.  I  am  not  going  to  mention  various  norms

specifically.  This  is  standard practice,  just  like we keep saying   is  a  topological  space

without mentioning the topology there. So,  etc. are normed linear spaces. 

Take a bounded linear map  from  to  and another  from  to . Now I am defining

an operation   on   to  , viz.,  . The same thing, you can

view it as an operation from  to , namely operating via  on , so you can

think  of  this  as    is  composing   on  the  left,  whereas   is

composing with   on the right.  So, if  you vary   this  will  be a  map from   to

 and if you vary  and keep  fixed then it will be map from  to .



So,  this  is  an  interesting  thing.  Obviously,  these  functional  compositions  are  non-

commutative so that is why you have to worry about this whether right composition or left

composition separately. In any case the first property (1) is very simple: .

This is a very fundamental property which makes the norm linear spaces into what are called

as normal algebras. Now,   is again a bounded linear map from   to  .

Similarly,  is the bounded linear map from  to .

They are linear maps is clear. They are bounded linear maps. To see this, you keep using this

property (1). If you vary T, it will tell you that the operator norm of  is less than or equal

to  Similarly, the operator norm of  is less than or equal to . Thus both  and 

are continuous. That is what I wanted to emphasize. All of them follow from this one single

property (1). Linearity is obvious for all of them. If you add  and  here and then compose

with , it is the same as the sum of  and . Similarly,   operating upon the

sum of  and  is the same as . So linearity etcetera is not a problem and

continuity follows from (1). 
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So, I  will  have one more important lemma here namely now I am assuming that   is a

Banach space. Banach space is nothing but a norm linear space in which the induced metric is

complete, every Cauchy sequence is convergent. So, take  as this codomain as a Banach

space.  Then the set of all  bounded linear functions from   to   with the operator norm

becomes a Banach space itself. This is what we have studied last time in the part I. 

Let  belong to . Now  is short notation for . So, these are self-maps from

 to , bounded linear operators. Let  is an element of , where  itself is a Banach

space. Suppose that . Then (or you can take  also which is the same thing

because I can change  to ) is invertible with its inverse given by the convergent series

summation from  to infinity of ; the geometric series viz.,  and so on. 

Why this is convergent? Look at the partial sums, they are bounded by the partial sums of the

geometric series summation , where . That is the proof. So, if you look at identity

map  from  to  . That is invertible. You can now take the ball of radius  around it in

. All the elements in the open ball are inevitable. So, this is the hypothesis this is the

conclusion here. In any Banach space the unit ball centered around the identity consists of

only invertible elements. There may be more invertible elements of course. For instance non

zero scalar multiples of invertible elements and so on.



The open ball if you take all the elements in that are inevitable. So, this is the hypothesis this

is  the  conclusion  here.  In  any  Banach  space  the  unit  ball  centered  around  the  identity

represents all invertible elements. There may be more and multiple elements of course but

this is definitely a all these are invertible elements this is the meaning of this. 

So, here are some elementary exercises for you to work out. It contains few other statements than

whatever I told you already, without proof and so on. So, that is the first lesson you have to do. So, let

me just read out these. 

(1) Show that formula (6) defines a norm on . I have just given the definition, you have to

show, you have to verify those three conditions for the norm.

(2) Prove lemmas 1.5 and 1.6 and this one this is what you have to do. So, that is the exercise for you.

Thank you we will meet next time.  


