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Welcome to module 9, today we will concentrate on Topology of   of course, we cannot

cover the entire topic as such, but few glimpses of what is happening inside   including

 etc all together one single thing. I am not making any separate cases here ok. 

So, let us recall that a  dimensional Cartesian coordinate space consists of  tuples of real

numbers   is  are  inside  .  The  Euclidean metric  you  have  denoted  by

 is nothing, but the norm  of , and the  norm which is the square root of the

sum of the squares of the differences . 
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Recall that a closed disc was defined as the set of all points which are at a distance less than

or equal to  from a given point and is denoted by . So, all points  such that, now I am

using  this  distance,  I  can  drop  out  this  one  because  for  now onwards  unless  I  mention

otherwise, it is always the Euclidean norm. So, I could have done just , but here I am

elaborately writing  less than equal to  ok. Similarly, the open disc is defined 

less than  only ok? And when you just take the equality that will be the boundary sphere. It

is  called  as  sphere  of  radius   inside.  everything  inside   ok?  So,  it  should  be  

dimensional sphere. Set of all   belonging to   such that  . We do not take  

equal to . We do not take a sphere of radius . So,  is positive, that is important here ok. 
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The special case when the radius is equal to 1, we will have a separate notation, because we

have  opportunity to use it again and again. So, I will just denote it by  instead of  it

is a decorated , Euler font ok. This is a closed disc of radius  centered at , just to indicate

that I am working inside , I am putting this  here at the top. 
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Similarly,   is the open disc and   is the sphere of radius   ok. So, this is the short

notation. So, the first thing is that the  metric is the Euclidean metric which is coming from

the norm, has this obvious property, namely, if you add a vector , to both of them namely 

as well as  is the same thing as .

So, that is called the invariance of  under translation. Adding , a constant vector is called a

translation by . This I denote it by  is a map from  into  given by  going to 

. Its inverse will be  going to . And; obviously, this is a continuous map. Obviously, 

and  are inverses of each other. So, it is a homeomorphism. 

Likewise, for each non zero scalar you can talk about  , the scalar multiplication by  

going to . This time you have to have  non zero if you want  to be a homeomorphism. If

 is  ,  this  will  take  entire  thing  to  ,  a  constant  function   right?  It  would  not  be  a

homeomorphism that is all. So, what is the inverse, inverse is  going to . 
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So, if you look at   maps  to what?  has centre  , subtract   and add , the

center goes to , so, the disc will go to , the radius does not change that is precisely the

point here. Namely,  is . So, this closed disc of radius  mapped onto



a closed disc of radius , but centres have changed ok. So, all closed disc with radius , they

are homeomorphic to each other under translations.

Similarly, now you can the centre at the origin  . Use multiplication by arbitrary positive

scalars,  . Here then it will be dividing by  and multiplying by . So, the radius  will

become . So,  is mapped to . And vice versa if you multiply by  by . That will

be the inverse of  .  Thus   and  , they are all homeomorphic to each other

because you can compose the two maps, first translate, multiply and then translate again and

so on ok?

So, the conclusion is that any two discs any two open discs are homeomorphic,  any two

closed discs are homeomorphic, any two spheres are homeomorphic. So, first you understand

what is going on here if you put equality everywhere you will get spheres ok, If you put

strictly less than strictly less than  you will get everywhere open discs, less than equal to you

will get closed discs.

So, argument is the same. Same maps  and  will work for all of them ok. So, they

are all homeomorphic to each other ok. By the way all these are defined on the entire of 

this these functions these homeomorphisms are defined on the entire of  , just to see that

this  is  homeomorphic  this  one  we  may  not  need  it  there  may  be  many  other

homeomorphisms, but this is easy way of seeing that they are homeomorphic to each other

ok?
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Now, I come to another important one namely from the whole of  to the open ball of radius

 centered at  . I have this homeomorphism what is it is,  , this is again  

norm I have taken  plus that, then I have taken the square root here, raised to half ok?

You can  directly check that this map here  going to , this is the inverse of

that. This map is defined only on the open ball strictly on the open ball because as soon as the

 is 1 this is not defined you have   would be   ok. So, that indicates that as  

approaches the boundary, this value goes to infinity ok?

So, the boundary points are not there in the domain. So, this is the inverse of that. We can

check that directly. So, that will tell you that  is homeomorphic to . You combine it

with whatever we have seen here all open balls are homeomorphic to the whole of . It is

very important here that you take the open ball and not the closed ball ok?  not 

ok? So,  I have notation here, but we have no we did not have the notation over there

ok.
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Now, I come to different subsets. Instead of round spheres and discs and so on, now I will

take squares, rectangles etc. ok? All these things I call, in general in , as boxes. So, in this

terminology an open interval is a box, open interval cross open interval is another box, open

interval cross open interval cross open intervals is the usual box in  , but I am using the

same word box for all  ok? So,  ranges from  to  open these are all open ball open

boxes ok?

They happen to be open subsets of  also. That is very easy to see. Similar to what we have

seen for any open ball. Take any point inside that. At that point you can give an open ball

completely contained inside the original ball, centered this time at the point you have chosen.

Similarly, for this open boxes also you can do the same thing. Therefore, these are all open

subsets first of all ok?

So, what I want to do is that any box like this any two of them, they are homeomorphic to

each other. So, first of all you should check that we have already seen this when  is equal to

. Any two open intervals are homeomorphic to each other. Remember that ok? So, you can

use that put several of this   to say   here ok, then take the product of this  

which are homeomorphisms from  to  that will give you homeomorphism. Ok?



So, instead of that I am going to write just one case. Namely, this is just the way we have

done earlier also namely from   to   you write down this one   ok then take

product of . So, if all of them are homeomorphic to this  this is another standard notation

I am going to use namely interval  taken n times product taken  times ok. So, if that

is  homeomorphic  to  any  open  interval  any  open  box  like  this  any  two open boxes  will

themselves be homeomorphic to each other ok. 

So, finally, I want to say that open boxes and open balls closed boxes and closed balls they

will all be homeomorphic to each other ok. So, I am going to give you a homeomorphism

from  to . If you put  it will be only into the interior because , I am taking this as

open here ok. Of course, I am taking usual topology on both sides the Euclidean topology on

both sides ok I would not define a homeomorphism here, but this should be the .
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So, we shall do this geometrically, illustrated diagramatically. You can write down a formula

also there is no problem by using convexity of both the spaces. So, this method will be used

later on for different things also ok? What is the meaning of convexity? Inside any vector

space, a subset is called convex if given any two vectors inside that subset  times this vector

plus  times that vector, which is the line segment joining any of the vectors, the entire

line segment  must  be inside the subset.  That  is  the meaning of  convexity  ok? I  am just



recalling it. what we are going to do is use the fact that they are both star shaped with the

apex point at the origin. Star shaped means little less than convexity.

Here one of the point is fixed that is called the star. From there all the line segments which

are emerging  from that  point  to  any of  the point  of  the  given set  that  is  the entire  line

segment, must be there inside the set. Like, if you take the union of   open interval

along with  on the axis OR the union of the entire axis and axis, these are not

convex sets, but they are star-shaped at the origin ok? So, that is star shaped. Definition of

star shaped with an apex point at the origin.

That means, I am writing it down here, every non zero element of  lies on a unique line

segment , where this  is a unit vector ok? So, this is the property I am going to use. this

property can be termed as star shaped, if you do not understand this term, the property will

tell you what I am going to use. So, that is enough.

Given any point   in  ,   not equal to , there is a unique line segment, the line segment

 will do, ok, that is contained inside  because for all these points the norm will be less

than  the distance between  and that point will be less than . So, that is the criteria here, ok.

Indeed, every point   not equal to zero, lies on a line segment like this ok, for a unique 

belonging to . Namely, take  equal to  ok? If you take , what is the norm

of this, the  norm? It will be equal to . So, that is a point of  ok? Then the segment

 will contain this point   because to come back to   what you have to do you have to

multiply by its norm.  is equal to . 
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So, here is a picture ok?  I am going to use this later on. So, I will come back to this picture a

little later on ok. 
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So, what I want to do is now the same statement which I did for the sphere I can do it for the

rectangle the closed rectangle ok. Take a point on the boundary of the rectangle join it to the



center, every point inside this rectangle other than  will actually lie a unique line segment

like that.

So, that is clear ok? Exactly same way you can do that, for the . this  is  raised to n

ok that is the closure this I am taking closed the closed intervals here. If you replace  by

the so called boundary of , what is the boundary of ? See in , the boundary consists of

this line, this line, this line and that line right? the 4 sides.

So, how do you define that, here the  coordinate is  right, here  coordinate is , here the

 coordinate is  ,  here   coordinate is  .  So, that  is what you have to do, one of the

coordinates is  or . So, that is what you have to do.

So,  is  or  is , product of   is  take the product that is  which is same thing as

one of them at least must  be  , which is same thing as   is   or   is  . ok that is the

boundary of this   this is the boundary of   also ok. Even if you do not know the word

boundary in general does not matter this is the definition here for the boundary of .

Notice that   can be defined in a different way all points   belonging to   such that the

maximum norm is less than  ok? This rectangle here in  can be defined as 

or we can just defined it as all  such that the maximum of  and  is less than . So,

that is precisely the maximum norm here ok and   is all  those points,  which have their

maximum norm less than or equal to . The boundary is all those in which maximum norm is

exactly equal to , ok. At least one coordinate must be exactly equal to , I mean modulus of

that coordinate. So, it could be  or  that is precisely what I told here how to how to get this

 which I have got it here ok. So, these are some elementary descriptions of some interesting

subspaces of , ok.
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So, one thing which you can observe is the   norm taking the maximum of modulus of

 or  taking the square  root  of  the  sum of the squares  etc  both of  these  are

continuous functions in  . What is the meaning of   here with the usual topology and

these are mapping into  inside . So, there also, I am taking the standard topology with

that these are continuous functions ok?

Because each modulus of  is continuous taking the maximum of continuous functions.  That

is what it is.  And here, it is the difference is continuous, taking the square is continuous,

taking the sum is continuous, again taking the square root is also continuous because these

are non-negative ok? Wherever you are taking the square root, make sure that the inside thing

is a non-negative quantity. So, this part is also continuous ok? 

Now, look at these fraction here:  , , ok? These things are continuous wherever

the denominator is not , you take a function  which is continuous  will be continuous

wherever  is not . That is a fact I am using here from elementary real analysis ok. These are

real valued functions  going to  or , they are continuous on  because

at  they are , everywhere else they are positive. 



So, it follows that the following two formula  which is , now I am multiplying

this  by   is  continuous.  So, multiplication of  these  two that  will  be continuous,  

similarly is  that is also continuous. So, they define continuous functions now where

are they, I start from the unit sphere then I take , unit sphere means norm of  is  the 

is , but it is 2 norm and it is  may be something different I have divided into ball.

That means what if I take the  norm of this one now it will be equal to  therefore, it will be

in the boundary of   similarly here start with anything on the boundary ok it is   norm

could be different. So, divide by that now we should take the  norm of this whole thing it

will be equal to . So, you have landed inside  here.

So, these two maps are continuous ok what I want to say is it is elementary geometrically to

see that they are inverses of each other. In fact, take  of this ok, now what is  of this one, I

have take whatever here and divide it by it is   norm ok, this is some real number. So,  

norm of this is  norm of the numerator divided by this number ok, but what is the  norm

of this one.

See, I want to say that it take  of whatever from starting   then apply  on that one you

would comeback to  ok. So, we want to say  goes to  ok when you divide anything by

 norm it will be come back to  because norm of  is already equal to norm of  norm of x

was already equal to the  here, ok.

So, here is the picture that is what I wanted to say picture demonstration of this one. Take a

point on the sphere unit sphere ok extend this line segment so that it hits the boundary of .

How do you get that, on this line we have to take only one element there is only one element

in the same line segment in the same ray the positive ray which has its  norm equal to  and

that is this point ok because there is a unique point which will intersect this one.

So,  goes to , now start with this one if you divide it by it is  norm we got back this

one because that is the only point with  norm equal to  this is the only point. So, that is the

inverse of this. So,  of this point would have been this one. So, this is this is why  of that

one is this one ok. So, geometrically it is very easy to see, but we can also do this through



formula ok. So, from the boundary to the boundary I have a homeomorphism here because

they are inverses of each other ok.
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Now, what I do, I look at  from the interior the entire thing  to . So, I define this by a

formula  remember every point here looks like , where  is a point on the boundary

right, except when the scalar , this  will be an indeterminate, you could have taken any

point . Otherwise it is a unique point. And every element can be written as , for .

I do not want the  element here. So, , ok,  strictly less than  less than equal to .

So, this will give you all points other than , those points you take . At point , we

have to define it in a different way. We define it as .

So,  this is nothing but, remember it is  times . So, I have defined this one by extending

this  , I  am getting  , extending how? By putting   going to   ok. The problem is that

whenever you define a function by two different formula you have to verify the continuity.

Here,  this is only at one point I have to worry about. By taking the limit of this as  tends to 

its limit is the same value here. Therefore the function is continuous ok?



(Refer Slide Time: 29:56)

So, that is what I am using here, elementary calculus. So, we need to check the continuity of

 only at the origin ok, elsewhere it is given by this formula which is continuous already we

have  we have  seen.  So,  at  the  origin  what  you  want  to  do,  consider  a  sequence  

converging to . See ’s are inside  they are not fixed, they may be different points ok?

but  's are real numbers when does this sequence converge to  ? It converges to   if and

only if  converges to , ok?

Because norm of  is equal to  always, ok, It is a bounded sequence this will be  only if 

goes  to   ok.  These  are  inside  ,  they  may not  converge  to  any  point  they may be

converging if at all inside  if and only if  is .

Therefore, since  is   this implies , you see this infinite norm of  is bigger

than , ok? There are   coordinates each of them is less than , the square of the

sum total will be less , right.

So, at least one of the coordinate must be bigger than or equal to   once one of the

coordinate is bigger the infinite norm will be bigger. So, that is all I am using. So, the infinite

norms are all bounded away from  this  is fixed here by the way, the  is the one which is

changing here. The sequence is with respect to the variable , ok?



And take , take its  norm, by this definition, it is the  norm of   divided by

l infinity norm of  , which is bounded below by  . So, divided by that one will be

bounded by less than or equal to .

So, it is bounded therefore, when   tends to   this goes to  , ok?   by something in the

denominator which bigger than . Therefore,  divided by that is less than or equal to 

. Exactly similarly we can define   as an extension of   here ok? And verify that  it  is

continuous the same proof we will work there and it will be inverse of . That is all. Over.

OK?  Enjoy writing down the full details here alright?

So,  this  will  give you a homeomorphism from square to  the circle  ok, the entire  square

including this one into the disc and then generalise this one, this is the picture for  equal to ,

but generalise this one. I have never used that this  equal to  only in the illustration, in the

diagram it is there ok?  So, all thing these things are varied for all  alright.
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We shall later on show that the unit disc in   with respect any norm, remember we have

several norms here all these  norms and so on right? This is homeomorphic to the unit disc

in the in the   means what now the   norm ok. The Euclidean norm here they are all



homeomorphic to each other, but that will take time we will do it next time, maybe little later

not next time. 
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There are some exercise here which you can go through by yourself, they will be given to you

as they will appear as assignments now. Also they will be in the notes. So, you do not have to

worry about that, you try your hand at these  exercises ok? So, that is it.

Thank you.


