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Welcome to module 8 of Point Set Topology course. So, in mathematics the study of objects

always goes hand in hand with the study of appropriate functions between them. Like, when

you are studying vector spaces you take linear maps, when you are studying groups you will

take group homomorphisms, right. Like this, when you are studying metric spaces we started

with continuous functions  definitions.

So, we want to extend that definition to encompass all topological spaces now, ok. So, the

new definition that we are going to make always should encompass the older definitions, ok

that must be the motivation of keeping this and it should give you more. So, that is the whole

idea.  So,  let  us  make  this  definition  first,  namely  of  continuous  functions  between  two

topological spaces.
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X 1 tau 1, X 2 tau 2 are two topological spaces. A function from X 1 to X 2 that is a set

theoretic  function,  it  will  be  said  to  be  continuous,  ok.  So,  it  will  be  called  continuous

function provided inverse image of every open set in tau 2 namely in X 2 should be open in X

1.V is in tau 2, f inverse of V must be in tau 1, ok.

So, for the first time you may see that why things are happening the other way round, but

soon you will realize that this is most natural way to define. It is not open sets equals to open

sets, inverse image of an open set  is  open. So, that is  the most  natural  thing. There is  a

concept which this open set goes to open set that becomes a subsidiary concept which is not

so important as continuous functions, ok.

So, there is another one also. So, we will come to that one later. This is the correct thing in

terms of epsilon delta definitions of our metric spaces. So, let us see how that is true, ok. So,

that will be justification for making such a definition in the case of topological spaces.

This tau 1 and tau 2 are just topological spaces they might not have come from any metric,

but suppose they come from a metric, then you have two different definitions. One is for this

one whatever you have given just now as topology, but there is already something continuity

coming from metric definition.
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 and   are two topological  spaces.  A function from   to   that is  a set

theoretic function, it will be said to be continuous, ok, it will be called a continuous function

provided inverse image of every open set in  namely in  should be open in .  is in 

should imply  must be in , ok.

So, for the first time you may see that why things are happening the other way round, but

soon you will realize that this is most natural way to define. It is not open sets going to open

sets, inverse image of an open set is open. So, that is the most natural thing.

There is  also a concept  in which this `open set goes to  open set'   becomes a subsidiary

concept which is not so important as continuous functions, ok. So, there is another one also.

So, we will come to that one later. This is the correct thing in terms of  definitions of our

metric spaces. So, let us see how that is true, ok. So, that will be a justification for making

such a definition in the case of topological spaces. 

This   and   are just topological spaces they might not have come from any

metric, but suppose they come from a metric, then you have two different definitions. One is

for this one whatever you have given just now, a topological definition, but there is already

something continuity coming from metric definition.
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So, what we want to say is  that these two things are coinciding, ok. So, that is the next

theorem here. Let   and  be two metric spaces. Take a set theoretic function

from  to   as usual. that will be a continuous function in the topology  to  

here, now, these are topological spaces, if and only if as on metric spaces  from  to

 it is continuous. Namely, there it is  continuous at every point. Given any point

 belonging  to   and  an  ,  there  must  exist  a   such  that   implies

.

So, this, I am just recalling, I am not making yet another definition here, of course. So, this is

the  definition for a function between metric spaces. It is equivalent to the continuity of

the same function on the corresponding topologies induced by the metric, ok. So, once we

prove this one there will be a full justification for the new definition, alright. 

So, let us just do this one which is not at all difficult. Assume that   from  to

 is continuous according to the new definition, ok.  Now I want to prove it for

. So,   in  is given, epsilon is given, right. Look at , that is an open subset

say ,  inside , right? This  is the member of .



So, f inverse of that must be inside . So, in  it is open, but now look here, I have

taken , here  is a point here. So, in the inverse image  will be there. Therefore,  is

in  and  is open so, it follows that by the definition of this topology, that there

is a  such that the  ball around , this is an open ball is contained in , right?

Because,  is the union of open balls inside this metric space  in the metric space

, alright. So, it must be union of such balls,   must be in contained in . 

Now,  is less than  implies  is in , right.  means is  is inside here.

So, y is inside  means  is inside . Now  inside  means what? Look at this

one this  is the same ,   is inside  means  must be less than .

One way is done.
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Conversely, start with any  inside , we have to show that  is open namely it is

inside , is what you have to show. So, to show that this is inside  take any point 

inside  which is inside ; that means what  is inside . 



But,   is  open and   inside   means,  you must have an   such that   is

contained inside . Therefore, there is a  positive such that, now that is the  definition as in

a statement; that means what difference between  and  is less than  would imply  is

inside this open ball, ok.

So, chose such a  then  is inside . Therefore,  is inside . So, this is

true for every . Therefore,  is open in , namely, it is in the element of , ok?

Go through this proof carefully. 

So, here I have used the fundamental property of   and  that around every point

inside an open set there is a ball around that which is contained inside that. So, this is the

property I have used here, ok?
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Now, one remark here is: unlike for the metric spaces, wherein we have the notion of uniform

continuity we do not have such uniform continuity concept in topological spaces, in general,

ok. There is no such notion except you have to work hard namely we will do that later on, if

time  permits,  for  some  smaller  class  of  topologies  which  are  not  necessarily  metric

topologies, if it is a metric topology of course we have uniform continuity, ok. We need to

put an extra structure called uniform structure on the domain and co domain. So, they are not



ordinary topological spaces, but satisfying some special conditions, ok? Indeed, that will not

be done in this course. Uniform continuity is not a main thing, it is a side topic. So, we will

not have time for that.
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Analogue of theorem 1.19 is true in the general case of topological spaces as well and it is

easier, this 1.19 is nothing but the theorem on composites, ok.

So, this remark was as a negative thing that is all, this remark was a somewhat in a negative

tone, but rest of them will be now very happy things everything positive. So, composite of

continuous functions is continuous is theorem 1.19 for metric spaces. The same thing is here

true and proof is much easier now. See, it is much easier what you have what you have to do.

There is a function here, there is a function here the composite is there, right. Take an open

set here inverse image open here it is what you want to show. Inverse image here under  first

comes here, but that is an open set because  is continuous. Now, you take the inverse of that

that will be the full inverse image of under  of inverse ok;  is  and then

 inverse, right.



This is the set theoretic property; this is purely set theoretic property. So,   is open this is

open, this is open  inverse of that is open, ok. So, it is easier to show that composite of two

continuous function is continuous in the case of topological spaces, alright. Therefore, this

also proves now whatever we proved for metric spaces. See we need not have proved that we

have used that, ok.
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A continuous function  to  now arbitrary topological spaces, ok said to be a

homeomorphism, this is the word I am going to use now, ok? What is a homeomorphism? 

is a bijection and it is inverse is also continuous;  is a continuous function, it is a bijection

therefore it has an inverse and that inverse is also continuous, ok?

Suppose, you have a homeomorphism from one topological space to another one; then the

two topological spaces are called homeomorphic to each other. This is homeomorphic to this

ok? From the previous theorem it follows easily that being homeomorphic is an equivalence

relation on the collection of all topological spaces.



One thing is clear by the very definition of homeomorphism, inverse is also homeomorphism.

There is no need to work, because it  is a bijection, inverse is  a bijection inverse is  there

inverse is continuous   is continuous. So,  inverse of inverse of   is   itself. Therefore, if

there is a homeomorphism like this,  should be homeomorphic from the other way round.

So, symmetry comes.

Any topological space is homeomorphic to itself because, identity map is always continuous

and bijection of both ways from the same topological space to same topological space, ok.

Identity map is always continuous no problem.

Finally,  transitivity  is  what  you  have  to  prove.  It  is  precisely  this  theorem.   this  one  is

homeomorphic this one this one is homeomorphic to that one  to  to  so,   to 

you will get, ok.

So, homeomorphism is a function, being homeomorphic is a relation on  topological spaces.

So, on topological spaces this in equivalence relation, ok. So, this equivalence relation is of

profound  interest to us.  Here are examples.
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Any two closed intervals consisting of more than one point. A closed interval could be a

singleton. So, you should avoid that. Singleton is  a singleton. If  there are more than one

point, then that closed interval no matter what it is all of them are homeomorphic to each

other this is the statement.

Similarly, any two non empty open intervals. If you take one of them empty and the other one

nonempty, they will not be homeomorphic ok, empty set is never bijective with respect to any

non emptyset ok. So, any two non empty open intervals in  are homeomorphic. So, there are

many homeomorphisms. actually, but you can find something which is very nice namely of

the type  equal to  is a linear polynomial, i.e., polynomial of degree one.

So, when is this a homeomorphism, it must have an inverse, right. So, it is very clear that a

must be non zero,  could be anything. And then, you can write down it is inverse, these are

linear maps, ok. For any non empty open interval is homeomorphic to the whole line itself,

the interval is bounded, whole real line is not bounded, but still they are homeomorphic to

each other.  This is what one has to see and there are several  ways you can see it.  Some

standard maps are the following.

Look at   . So, where I am going to define this? From the open interval

 to the whole of  . Suppose, I have proved this one is a homeomorphism. Then, I

know that any open interval finite like this will be homeomorphic to any open interval 

by this method so, all of them are homeomorphic to the whole of , that is what I get.

So, how do you get this homeomorphism? Very easy. Look at its inverse it is nothing but

, ok? You can compute it. The standard method is to put  equal to this and solve

for  in terms of . So, because there is a modulus you may have to make two different cases,

 non negative and  negative, ok.

So, if  is positive what is this; this is  then you can find  equal to , you can

rewrite it in terms of  equal to something purely in terms of  and so on. So, that is the way

to check that this one is a homeomorphism. Easy way. Directly right down the formula for

the inverse, ok.



Here is another one from trigonometry:  is ranging from . So, the domain

when  you  put  ,  it  goes  to  ,  if  ,  it  will  go  to  ,   goes  to   is  a  strictly

monotonically increasing function from . Because, you can look at its derivative blah-

blah-blah, it is trigonometry and some calculus you may have to do, ok? To show that it is

stricty monotonic, then you can take the limits to see that both   and   go to   and  

respectively. Those points are not there in the domain. But, the entire open interval is there

and the function all the values in . It is surjective map. Because,  goes to  and  goes to

, everything in between must be there by intermediate value theorem.

There is so many different things you can use to see why this is homeomorphism. I am telling

you. That is why you can write , it is just a justification for writing , ok?
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Given any topological space X you can look at all self homeomorphisms. Say from  to , or

from  to  and so on. Take any topological space , take a map from  to  which is

continuous and a bijection so that its inverse is also continuous. Look at all them. You can

compose two of them, again that will be a homeomorphism. You take the inverse and that is

again  a  homeomorphism,  identity  map  is  always  homeomorphism.  These  three  things

together constitute what? What do they make? They make a group; that is the definition of a



group. In fact, the group of automorphisms of spaces and such things, they are the harbingers,

they are the originators of group theory, ok.

The set of all self-homeomorphism forms of a space is a group. Unfortunately this group is

too huge. Unlike in group theory, in the beginning you get to know you know  small groups

or nice groups like integers and so on, ok. 

So, in general, the study of this group namely , brings out the geometry inside , ok. In

fact,  people  have  gone to the  length of  defining geometry as the study of  the groups of

homeomorphisms, groups of automorphisms, groups of isometrics and so on or sub groups of

this groups.

What is happening in this group, that is a geometry, ok? So, this group is quite huge. Let me

elaborate  what  is  the meaning of  this  ‘quite  huge’  a  little  bit  ok?  Such study cannot  be

completed in any semester course, ok?
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So, let us look at some examples here. Take all linear maps  or , like .

I have written there  and  are real numbers  must not , that is all. That you need to assure

that this map is invertible.



Now, I am writing the inverse also. Inverse will look like  going to  we can check

it that this is the inverse of that, ok. So, they are all there, they are all homeomorphisms of 

with itself. 

Given two pairs of real number   ok,   less than   less than  , or the

other way round whichever way you want, you assume that. There is always a linear map

alpha which sends  to  and  to . You just write down a linear map  and solve

for  and  by putting this condition.

So, that is that is third standard stuff. Solving two simultaneous linear equations. So, that will

give you the formula for this function itself, ok? Namely this   is now the function which

takes  to  and  to ; check that there may be some errors here you should check that,

ok? 

So, if there is  here in place of  that is not all that serious error, we have to check that and

correct it if at all. If it is correct it is fine. So, what is claimed is that you can solve for this 

is something like .

I am finding this  and  here. What is the condition,  should go to  should go to 

should go to  this is very straight forward, alright. Once we have done that this is already

geometry. See I can find a map which is a bijection one one mapping, one one correspond

from any interval to any other interval right; that has been this one now, ok. But, there is

more than that ok, more geometry is coming out of this.
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Take any set of real numbers finite set of real number, put them in an order. Take another set

with the same number put them in the order. The order is important here. When we are taking

only two of them even the order was not important. You could have mingled here  going to

 and  going to  that is also possible here, but here it is important that you should have

the same order.

Then, you can find a homeomorphism which takes  to  to  to , ok? How do

you get that? I will explain it to you. I do not want to write down the full formula. If you want

you can write down. Actually I have written down that also, but first I will explain it to you.
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These are  those are  there, ok? I want  to go to  means graph of

that the point would be here right this is a graph,  goes to . So, point would be here  will

go to  point would be here like that. 

So, these points I have been given then I have joined them by straight lines, because I know

there is a linear map which takes  to  to . Concentrate on each each interval here,

two points  at  a  time right;  take two at  a  time in the order namely so,  this interval,  that

interval, that interval. 

First  get the map which takes this one to this point and this one to this point so, this is this

map and this is the line segment. Here there is no condition. So, extend the same line segment

do not disturb it at all. Here there is no condition beyond that extend that line the same way

all the way from last line, but in between join them by the line segments determined by those

points.

This is a graph of the function. You can write down the formula for the function now no

problem. So, in each  to , there will be a different formula, ok? So, once you know this we

can write down, I have written it down here you can check it; there may be some errors here



from  may be we see in  may be seen something  maybe become , all that you have

to check, ok.
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So this is not a big game, you have to know of course but, what you should now understand

this, how to get this one, alright? So, I have defined the function in three different ways, but

these middle ones give you all, between intervals. The last two gives you what you have to do

namely do not worry this part we have to extend it as if we have defined here.

Similarly, whatever function comes here you extend it here. In between use the  function

from  to  point use this formula. So, that is what I have done here ok,  Where is

 are there right, we send   to  . So, I have taken this   is function   to   and

 to . For each , there is an , if you change  of course they will change right that

is correspond to these having different slopes here, ok.
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So, indeed here is a theorem from real analysis which characterizes all elements of , the

group of homeomorphisms. What are all the homeomorphisms? The characterization may not

be much helpful, but it is quite helpful: a function  from  to  is a homeomorphism if and

only if it is continuous and strictly monotonic. Strictly monotonic because, you want what?

you want it to be one one mapping right? like that, ok.

It may not be on to, but if you put onto condition also it will be homeomorphisms onto ,

Otherwise, it will be homeomorphisms on to the image, ok. So, I am using this word here

homeomorphism, in a slightly more general sense that is all. See I have not put ontoness here

I should put ontoness here also, ok. Yeah. So, let us stop here today, in next time we will do

more on not just on , but now  that will be the next topic.

Thank you.


