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Welcome to module 7. As promise last time let us now take up one by one a few examples of

topological spaces directly, which may or may not arise from a metric space. We shall begin

with a few examples of topologies which do not arise naturally as metric topologies ok. So,

that may be the end of today's lecture. Just some more examples.
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Let  be any set then we take a subfamily namely consisting of empty set and . We cannot

do more stringently than that because the first one first axiom says empty set and  must be

there right. So, put that and do not do anything more that is it. The other two conditions are

automatically satisfied. 

So, what is subfamily of this? Either it is just empty or just  or both . What is the union?

If you get an empty family, union will be the empty set. If you take singleton , then union

will be just . If you take the intersection it is always empty if you take only singleton  as

the set then intersection is  again. So, (AU) and (FI) are automatically satisfied by this one,

ok.

Similarly, there is another one, well you may say these are disinteresting. In some sense they

are disinteresting but in some other sense they are extremely interesting also. So, take other

way around, namely, put all elements of , all subsets of . That one, we are going to

denote this by , here this is  for indiscrete space,  for discrete space these are the names

ok.



Again I am checking that this   is a topology. It is very straightforward because we have

made no restrictions at all every member of a power set is there the power set automatically

satisfies all these properties ok.

What is happening here is this I the indiscrete space this topology is the smallest topology. If

you take any topology it will contain this .

Similarly, this  is the largest topology every topology is subset of this by definition, because

 is   ok? there is no more. There is nothing bigger than   on   alright. So, the

least  one and  the biggest  one  that is  what  we have  observed.  Now, these  things did not

actually come from metric space, right we have created it without reference to any metric, but

maybe they are metrizable. That is a different problem altogether.
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So, let us examine that also later on. Presently,  let me give you another important example

here. By the way this fellow is also a very important person. He has done a lot of work not

only in topology, but in number theory, geometry,  all  sort of things. So, he was a Polish

mathematician Sierpinski.



Maybe you have to pronounce it as Sierpinski? An interesting example from theoretical point

of view is the so called Sierpinski space. Here we take  to be a set with two elements. So,

any two elements set, usually we can denote the members by by  or  depending upon

what kind of algebra you want to do ok. Here we are not going to do any algebra so, you

choose whatever symbols you want.  Any  also will do. I do not care. Ok?

Take any two element  set  say  .  Now take the only proper open set  to  be  one of the

singletons. When I say proper open set I mean of the one which is not empty nor the whole

set. The whole set is always there the empty set is also there. They are not called proper open

sets they are open always.  So, proper means not equal to empty set not equal to whole set.

In between them there is only two of them namely  and . but don’t take . Just take

 ok. Only one of them you take. That is the meaning of this that will be a topology. Let us

denote it by this symbol ? Verification that its topology is very straight forward ok.

Why I am interested in this? One of the properties which you can verify later on because right

now we have not done enough terminology here, is the following. This space has a wonderful

property: take any other topological space  . You will know it completely if you know all

continuous functions from  to  ?. So, right now you do not know what is the meaning of

continuous function from topological space to the another topological space.

So, right now you just take it for granted, but once you know what is a continuous function

you take it as an exercise and solve it ok? Knowing all continuous functions the same thing as

knowing  means what? you should be able to describe what are all the open sets here in 

or what are all the close sets here that is the meaning of knowing the topology on , ok?

So, for that reason, that is one reason, but there are other things too.  This example will serve

as illustrating examples or what you may call as counter examples ok. So, there is a method

in this. This Sierpinksi space construction is a method that I am going to describe now.
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The general construction and then there are variants also. One part, I will tell you, is very

useful  in giving counter examples.  Start with any topological  space   ok? Take this

 what  I  have  put,  this notation, I  mean because  I  want  to  celebrate  this  guys name

Sierpinski, this is the Sierpinski operator. So, what does it do? It adds an extra point to the

space . So, like what we have done in the extended complex plane, like that, ok?   disjoint

union an extra point. And a topology  ok?

The underlying space is a disjoint union of  with an extra element star and this  topology

consists of all members of   they are there, anything which is subset of   and open in  

(open in ) is already in . So, all members of  are there. Further, it has one extra element

namely  itself. That is the only open set containing this . The whole space.

So,  that  is  the  property  so,  this  star  which  has  the  property  that  look  at  any  open  set

containing it is the whole space. Such a point is called Sierpinski point ok? Such a point is

called Sierpinski point and such a space here what I have called as  which generalizes

Sierpinski  space.  So,  starting  with  the   if  you  obtain  this   you  can  call  it

Sierpinskification. For example, in this example what is the Sierpinski point? it is   is a

Sierpinski point ok.



Because take a look at any open set containing , it is the whole space for  there is an extra

one  singleton  is an open set. So,  is a Sierpinski point here ok. 
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Another interesting topology which is quite celebrated, which is quite central than Sierpinski

is the following.  For this, I have to start with an infinite set. Then this  corresponds to,

you know, ‘compliment of finite', so, that notation itself is indicative, to be the collection of

all subsets   of   such that the complement of  is finite. Of course,   equal to emptyset

should also be included, though the complement of the emptyset is not finite. I have to allow

empty set also just to take care of the axiom (T). 

It  is not hard to see that this is a topology on   ok? As soon as   is finite for one

member in the unions of several of them, X minus the union will be also finite. That it is very

easy to see ok. If  and  are there  is finite and  is finite then 

will be also finite because it is the union of these two, by De Morgan law ok? 

So, you can easily verify that it is a topology this topology is called cofinite that is why I

writing it  . co-finite topology. One of the statements about that is that if you take all

neighbourhoods of a given point ok? Take any point this this is going to be true for all the

points, take the intersection of all neighbourhoods a point , it will precisely equal to the .



So, this is going to be a characterization of this space in some sense. So, take it as an exercise

think about it. Later on, we will give you several characterization of this topological space

again and again this will be used ok different way of looking at this same space. 
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Somewhat similar to the above example, but not so, important is the following. Instead of

taking a just a infinite set now you take an uncountable set ok. Let this be denoted by . 

denote the set of all  such that either  is empty or  is countable. Countable includes

finite also, but it could be countably infinite ok?  That case is also there. So, this will be

larger in some sense. That is why I have started with an uncountable set to put this condition.

Once  again  verification  that  this  it  is  a  topology is  similar.  I  mean  you have  to  use  De

Morgan's law ok. So, this will be called co countable that is why , co countable topology

on . So, to understand what is going on you can compare it with the earlier example number

4 ok.
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Now, I come to more familiar things ok? These things were just to tell you that  metric is not

always necessary. There are many other ways of getting topology and interesting topologies.

So, now I am coming back to the real numbers. I again look at the metric  is here is

 right? And it gives you a topology and that topology we are calling the usual topology

or Euclidean topology right? 

So, it is denoted by , almost all authors curly U for the usual topology or you may call it as

Euclidean topology. It can be described in a slightly different way. That is my object now.

Instead of looking  as a metric, now I am looking at the order in :  . So, it is an order

in  right? there is a total order in . Consider all the open intervals; when I say intervals,

that refers to the order not to the distance right? 

The interval means what? All points lying between any two given points right? So, I hope

you know what is the definition of an interval  ok? Then take the collection of all subsets

which are unions of members of this, namely, union of open intervals.

Of course empty set is also allowed. So, this is similar construction here. Similar to what we

did for . There we took the balls with the metric ok. With the real numbers you do not

have to refer to the metric, but you can use the order. If you take for example, an interval



  can be also thought of as an open ball with its center   and radius equal to be

, ok?

So, in some sense I am cheating, but no. You see I am never mentioning the metric here I am

just looking into that order here. Such order is not available if you go to  and so on so.

It is available only inside . So, that is why I am using it. It is not even available for complex

numbers you see. Ok so, that is the important thing here. So, you can describe this topology

as follows: an open set is union of open intervals.

Then it is not very difficult to prove that the third property that intersection of two intervals is

either  empty  or  it  is  again an  interval  ok?  Open  interval  intersection  with  another  open

interval is open interval that you can prove very easily. So, that is the part of the proof here to

show that this forms a topology ok?
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Now, I come to the point  why I have introduce this one. This idea of order in   can be

generalized quite usefully ok? Recall that by a partial order on , we mean a binary relation

on   which satisfies  reflexivity,  transitivity,  i.e.,   implies  ,  right? And

antisymmetry if   and  then it should imply  ok? In addition, if this partial

order has the property that any two elements in  are comparable, so, I am putting this extra



condition here; that means, that it is a total order. So, I am recalling these concepts. I hope

you already know these things. If you do not know, right now you can learn it ok? This is

called the total order or linear order ok?

We also have a short notation   just implies   that was the relation, but   is not

equal to  ok. Now, I have deliberately denoted this one by this curly symbol because right

now  is not the set of real numbers ok? So, not to confuse it with the standard less than equal

to relation inside , I have denoted by this one this  symbol alright? 
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Now, start with a total ordered set . We can then take all open intervals in . So, let

me redefine what are the open intervals here, now carefully. Given  and  in  you can look

at this this notation  this is also unfortunately the standard notation for ordered tuple ok?

Here it is an interval all point  inside  which will lie between  and , that is  ok.

So, again here there is a typo. I want to write this curly less than, curly thing because that is

the notation here, never mind. So, the interval  is the set of all  in  such that  is less

than . See this infinity is not a symbol whereas the interval  is a symbol. The  does



not make sense. We do not have   as an element of  .  Nor it  implies that we have an

increasing sequence such as  in .

There is no convergence or anything like that its  is an interval just a way to denote the

set of all  in  which are bigger than  ok? Similarly,  is the set of all point  which

are less than . Take all these subsets. They will form a what? They will form a topology on

. Where is the emptyset? You can take  equal to  then this will be an empty set ok? There

is no  between them; strictly between them. That is the point ok. So, that is a topology and

that topology is called the order topology. So, what you have to check here is that intersection

of any two open intervals is again an open interval if it is non empty. So, do not use any other

properties of real numbers, other than the total order. That is the whole idea.
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So, it can proved that a topology on a given set may arise by several metrics or it may not

arise out of any metric right. If you take a finite set for example, then every metric on  

gives you the discrete topology, which I denoted by   right? On any set   the topology

induced by the discrete metric is again discrete.

On the other hand, we shall soon see  that there are many topologies which do not arise from

any metric. Of course, in  a simple example, we have already seen this. Namely, you take a



set with exactly two points, but take the indiscrete topology ok. Then it cannot be got out of

any metric because as soon as you put a metric which induces the topology the topology will

be a discrete topology.  On the two-point set, discrete and indiscrete topologies are different

already.

In fact, it is true that if you take any indiscrete topology on any set with more than one point,

it cannot come out of any metric ok. That may need some more seeing. Once we understand

what happens to metric topologies in general. So, having said all these, we still want to stick

to a lot of ideas and lot of results from metric spaces. Why? because the central theme in

topology is always parallel to the results that we get from metric spaces. So, we should not

forget metric spaces or discard them. 
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Now, let me give you one of the important examples. It looks as if I am doing algebra now,

but  those  algebras  are  very  familiar.  Algebraic  structure  that  we  have  on  the  complex

numbers or the real numbers the field  in the field  you can add you can multiply addition

and multiply have some inter relations, associativity, commutativity law of distributively and

so, on. 



These are the things which make the formal definition of a group and a ring and so on. So,

you do not have to worry about it too much, about those structures. So, whatever I am going

to do you can take that as definitions. If I introduce new notation new term you can take that

as definition it is that much accurate there ok. 

So, having said that take any set and look at all the functions from that set to . Point wise

addition and point wise multiplication is the key. Take two functions   and  . You define

 by taking their values and then adding them   operating upon   is  .

Similarly,  operating on  is  ok. So, this already makes the set of all functions from

 to  itself a vector space, the vector space structure actually comes from that of  , ok?

So, that is a vector space structure, moreover I can also multiply two functions because I can

multiply two numbers right?   is  . So, that multiplication will have again the

same kind of relation with the addition namely it is distributive. So, what one can say is: the

multiplication is bilinear with respect to the vector space structure  is   and

you can pull out  wherever you like  is  same thing as  right?
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So, that is the vector space structure. So, you can have linear maps on them. What it means to

say bilinear? Linear in both the variables. Not only that even on the other side also 



is the same thing as   which is same thing as   and so on. That is because

multiplication  is  commutative  also  ok?  In  particular,  any  such  structure  is  called  a

commutative ring. So, this , the set of all functions becomes a commutative ring.

It is a commutative ring and  it is a vector space right? Such a thing is called an algebra. So,

this algebra has another important property namely, the constant function one plays the role

of multiplicative identity.  is  into one. So,  into .

So, that is why this is called a commutative algebra over k with an identity element. If you

want  to  know other  examples,  the most  famous examples,  the  most  useful  examples  are

polynomial  algebras.  Take  real  or  complex  numbers  as  coefficients  take  one  variable

polynomials they have all these properties.

Take real coefficient take one variable they are all these properties. More generally you can

take   variables and take   which denotes the set of all polynomials in the

variable . It becomes what is called a polynomial algebra. It has exactly similar

properties. Actually this polynomial algebra is a subalgebra of our is great  how do you see

that? The special case namely take the set  as just just you know . 

So, there are all functions on , ok, do not take all functions only take polynomial functions

that is all that is a sub algebra ok.
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Now, I am going to give you another important sub algebra here namely I am writing it as .

 stands  for  bounded  functions  ok?  Only  take  bounded  functions  into  .  Sum  of  two

bounded functions is bounded. The scalar multiple of a bounded function is bounded product

of two bounded functions is bounded.

So, this is all easy to see. what is the meaning of bounded? As  varies  is bounded by a

single number say  for all . This is the condition. So, for each , we may have different 

. If  is bounded and  is bounded then you can find a common bound for  as well as 

as well as for  and so on. So, the set of all bounded functions forms a sub algebra, subspace

as a vector space and a subring. It is sub algebra.

On this subspace we can do some geometry. We can put a norm on it. So, the norm is if you

do not want rigorous notation the short notation is just norm, but it is the infinite norm this

notation is used for supremum norm. What you do? Take  as  range over  take the

supremum  of  that  set  it  is  a  bounded  set,  the  supremum  is  a  finite  number.  Then  the

verification that it is a norm is exactly similar to what we have done in other cases, ok?



Only triangle inequality takes a little bit of time. Unless you spend that time yourself you

would not know what is going on. That much of time you have to give ok? On your own,

you verify that this is actually a norm. 

Moreover there is one extra property here, namely the norm of , the product, is less than or

equal to norm of  into norm of . This not a part of the definition of a norm. For the norm

you have norm of  is  if and only if  is  ok, norm of  will be  times norm of  and

triangle inequality. But this is an extra thing because, there is an extra structure. You can

multiply two functions here  into . Its norm is less than or equal to norm of  into norm of 

. This property of the norm you may call, it is respecting the multiplication.

So, that makes it a normed algebra, the norm and the algebra structure are not just on their

own. They have some relation and that is the relation describe above. In that case,  it is a

normed algebra ok. Once you have a norm, of course, as usual you can take the distance

function corresponding to that, namely distance between  and  is norm of  . So, that

will become a metric space that is what I meant by geometry here.
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Now, we can talk about distance between two functions and so on ok. Now, we can talk about

convergence ok? For convergence, you have to look at the metric. With respect to that metric,



we can talk about convergence of these functions. First  pointwise, if   is  a sequence of

functions, at a point , you get a sequence  of real number or you get a sequence of

complex numbers. You can take the convergence of that that convergence will be pointwise

convergence.

Whereas the convergence here with respect  to supremum norm always gives you what is

known as uniform convergence ok? This uniform convergence is exactly same thing as what

you have  studies  in  your  calculus  course.  If  you  have  not  done  it  yet,  we  will  do  that

whenever we use it more seriously. We will tell you what it is ok? but this is not part of

topology but is actually analysis. You must have learnt it ok?
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The algebra  has another interesting subalgebra but only when you take  as a metric space

or a topological space and so on ok, to take  as a metric space. Remember  consists of all

bounded functions ok, but now I want to put an extra condition, viz., consider the set of all

those elements in  which are continuous also. 

Now, continuity makes sense because here I have a metric space as the domain and as the

codomain, I have another metric space you can think of this as metric space always when you



do not  mention anything it  should  be taken as  the  metric  space  with the usual  topology

namely the modulus ok.

With respect to that if you look at all continuous functions ok? We have the  definition

or you may use sequential continuity definition. Look at all continuous functions. Then you

can show that, exactly same way as in your calculus course, that if  is continuous and  is

continuous then  is continuous  is continuous and  is continuous etc.

So, what does that mean; that means, that this  is a sub algebra like  is a sub

algebra of  ,   is also sub algebra of  . Now, not only that, one of the most

important property of both  and  is that they are complete with respect to this norm. Now,

what is the meaning of completeness? Similar to what you have done in other cases namely in

the case of  and so on. Every Cauchy sequence is convergent.

That property makes it a Banach algebra. Otherwise you would have called it just  a normed

algebra ok, here normed algebra. These two are  and , they are actually Banach algebras

because they are complete. So, for this part, we will come back to it, we will study these

things more thoroughly later on ok.  So, this is an important example we may come back to it

again and again. Let me now go back to giving you more examples of topologies ok. 
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Once again, look into  with the modulus function modulus function I have told you gives

you the  usual  topology  right?  the  so  called  usual  topology  or  Euclidean  topology.  This

topology now can be expressed in a different way when  is  ok not for complex numbers

when you take only the real numbers you can describe it in a different way, namely look at

the order there each number can be compared with another number right there is an order

there.

So, using that order we can talk about intervals the open interval  means all those points

lying between   and   strictly and so on. So, we have open intervals right now you take

collection of all open intervals ok. Then just like we have done in the metric space in general

way, what you do here, take unions of all open intervals ok? I mean not all intervals only

open intervals, any family of open intervals ok.

Take all such possibilities, open intervals two of them three of them infinitely many of them

also you can take unions of such things. Each of them you put them together in one single

collection that will form a topology, what is that topology it is precisely the same as given by

the metric namely,  open balls are the same open intervals. Ok?

But now I do not want to refer to the metric, but I just want to talk about intervals. I am

looking at different side of the same coin. that is all alright. So, that collection is exactly same

as , the usual topology alright, but why bother about looking in a different way, that is the

whole idea. 

Now you can just forget about all the additive structures multiplicative structures and so, on

in the real number just look at the order itself that is enough for me to decide the topology

there right. Therefore I would like to look at other structures it may have just the order only.

So, that is what I am going to do now ok.
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The idea of the order in , it can be generalized and usefully they will be something useful. It

is not just for generalization sake. We recall that by a partial order if you have not done what

is partial order I am going to to recall here now ok. So, we mean a binary operation on a set

 which satisfies reflexivity namely  is always related to  ok. Let us this one as  just to

distinguish it from the usual less than or equal relation OK?   for every   and

 implies  this is transitivity. Antisymmetry if  is smaller than or equal to  and 

smaller than or equal to   then   must be equal to   so, the same thing here  

implies and implied by .

So, these three properties define a partial order, in addition there is one extra property I am

going to assume namely given any two elements ok given any two elements in  that is  and

 belong to  they must be comparable what is the meaning of these  is less than or equal to

 or  is less than equal to  you hold then it is called total order or a linear order.

So, this property is also there with real numbers. So, I am going to stick to only this these

properties. Later on I may put more and more properties ok? Let us just take a totally order

set ok, let us have one more notation namely when you write  strictly less than  what is the

meaning of these  is related to , but  is not equal to . So, that is the meaning of this one 

is strictly less than  means  here  is not equal to .



(Refer Slide Time: 42:11)

So, this is notation ok with this notation let us do something now some meaningful things

start with a total order then you define intervals just the way you define it for real numbers

ok, but these are not numbers no need;  is all points  in  which are strictly between 

and . , but  not equal to  and  not equal to , ok that is what. 

Similarly you can define the open ray  is all point   such that   is less than  which

means  is bigger than  ok. Similarly  all point were which are  is less than . So, I

have defined the intervals here now you take collection of all intervals and unions of all them.

Now ok I am looking at all subsets of  which are unions of open intervals along with empty

set of course, I do not have to say that because if you take  equal to  the open interval  

equal when  is ,  that is empty there is nothing in between right. So, that is logic, but

let us just make it clear that empty set is also there ok and the whole set  is also there ok.

So, let us take this collection of union of all open interval. Then it will be a topology on .

Now, you have to verify it. you cannot rely on just your intuition. Anyway, we have done it

for a real numbers. What is that is the property that we use for the real numbers, that property

should be here in the just order topology if you use something else that will be wrong. 



For example, suppose I have stopped just with partial order I do not assume total order and I

do the same thing intervals can be defined and I can take this one it will not be a topology.

You understand my point, the total order is necessary to assure that this collection becomes

an order becomes a topology ok.

So, take a minute verify this one by yourself ordered topology has to be ensured. What you

have to do just like in the case of open balls you will have to check that intersection of two

open intervals if it is non empty must be again a union of intervals if it is interval it is fine

that  is  stronger.  You have  show in here  that  is  what  you have show then  only union is

coming, but the third property finite intersection you have to verify ok yeah.
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So, let us carry on. So, once more one more ah remark I can make, if you assume little more

properties for this totally order set that will be reflected in a topology and vice versa. So, you

may get more and more interesting things when you put topology more ah hypothesis on that

ok. So, this example will be again met you know may be at the end of a course or maybe at

some other time, but it will keep coming again ok.
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Just  to  emphasize  this  one  if  I  put  more  properties  then  it  will  have  more  you  know

interesting things happening. Let us just put one example let us take namely I start with an

order topology ordered relation totally ordered set and ordered topology ok, I have taken 

now I have fix here. 

Now, assume one more property of this order namely given any  let us say  is less than

 ok then their exists  such that  is less than  less than . So, in between any two element

there must be a third element. See the third element it is not is no it is different from both 

and  ok.

I am not talking about real numbers here. I can take , that is not allowed here, but I

am saying that this property is true. Let us assume this property ok. One can give a name, but

let us not bother about the name right now ok. So, given any two elements  and  belonging

to , I want to say that there will be an injective function from set of all rational numbers to

this interval  inside  ok.

So, the whole of  is sitting inside  through this map this is an injective map such that

is   its order preserving. So, what is the meaning of order preserving there is an order here



there is an order here ok. So, it must be preserving and it must be injective what does it mean

it is strictly monotonically increasing function  in  implies , ok. 

So, this is a claim now, now I want to show you something just wonderful thing just imagine

what is the meaning of this one this means that whenever it is such a thing you just one

element is there between any two elements these hypothesis, from this one you can conclude

that.

Inside every non empty interval you can find representatives like the entire rational number

the whole of rational numbers would be there inside that, in case one one correspondence and

its order preserving ok. So, such a wonderful thing will come out of that now alright? it is not

very difficult,  but  the  proof  is  educative  it  can be  the  proof  itself  the  idea  can be used

elsewhere that is why I am doing it ok
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The  construction  of   is  very  straight  forward  for  all  first  of  all  let  us  start  with  an

enumeration;  enumeration means what? Labelling of the all  the rational  numbers  rational

numbers are countable. So, I can put   equal to  . I am not saying now

that this is smaller than this one that is not possible it is not an total order some enumeration

of  we start with that ok.



By the hypothesis, there exist  belonging to  such that  is less than  less than  right.

Because  and  are given any two numbers are given there any any two elements are given

there inside   and   has this properties that between any two elements,  there is  a third

element. So, take that one you start mapping this  to  now.

So,   is   inductively. So, the definition of   is completed by induction. Suppose we

have defined  up to ,  ok. So,  could be  just one we have defined. So, that

whatever you have defined that is already order preserving ok. 

Now I am looking at extending this function to . So, I am going to define , ok.

So,   look at its status inside  , that   is totally ordered already right? So,  look at

 it will be somewhere in between. So, where exactly it is that is what you have

to know.
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So, I am making three cases here, namely, first case is that there will be precisely two points

 belonging to   such that   sits between them .   and   are

already elements of . So, somewhere it is there alright.



The second case is that it is not inside anywhere here ok?  is smaller than all the . The

third case is that  is bigger than all . So, this is the that out of these three one of them

has to happen ok. 

So, accordingly what we will do? Select x n plus one belonging to X such that in the first case

select it between eta a  and eta b which are already defined, must be bigger than eta a because

eta is order preserving these two are defined already. So, we pick up one element between

them. 

See  has to be picked up by us now and this   is going to be  ok how do I

pick at pick up this one between this because   is between these two ok.  In the second

case,   is  smaller  than  all  the   is  therefore,  look at   it  is  smaller  than all  the  

therefore, it is smaller than the minimum of them. So, between them there will be . 

So, pick up one element here the third case you do other way around namely  is bigger than

all the all these elements therefore, it is bigger than maximum. So, between the maximum of

all  these   is  you  pick  up  not   is  you  pick  up   between  them and   defined

 that is all ok. So, let us stop here next time we will continue with more

examples and better things.

Thank you.


