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Welcome to the last module of Point Set Topology course part 1. So, we shall continue the

study  of  Topological  Vector  Spaces.  Several  important  basic  results  have  been  derived

already. So, in this last module, I will prove three important results about topological vector

spaces. 

The first one is every finite dimensional vector subspace  of  is linearly homeomorphic to

.

Further  if   is  Hausdorff,  which  is  same thing as  just  assuming  ,  then   is  a  closed

subspace of  also ok. Every finite dimensional vector subspace is linearly homeomorphic, is

linear isomorphism to . Without the assumption of Hausdorffness, it need not be the closed

subspace, because you can always take indiscrete topology on any topological vector space.



Then the only closed subsets will be empty set of the whole space ok. So, that is very easy to

see that, the condition is necessary here ok. 
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So, here is a proof, start with a basis for , say . Then the map  going to 

extends linearly to an isomorphism from  to  right? So, linear part is done, already we

have seen that in the last corollary of the previous module, that any linear map is continuous.

So,  is continuous.

The only thing that is missing is  inverse should be also continuous, from  to  ok. So,

this is what we have to show. Now, you take  to be the unit sphere in  ok, I am taking 

which has the Euclidean norm, so I can talk about unit sphere there; there is no problem.

Then we know that  is compact. Under a continuous function, its image is compact, so, 

is compact.

Now,  is injective, so  goes to . So, non-zero vectors will not go to ; that means,  is

not in  ok. Now, let  be a balanced neighbourhood of , which does not intersect ,

see  is a compact subset and  is not there, so you can choose some neighbourhood here

which is disjoint from that, because of regularity or whatever, but I want to choose a balanced

neighbourhood also alright.



A compact subset and a disjoint closed subset can be separated, that is what you have already

seen. So, for that you do not need Hausdorffness and so on. So, see slowly I am using all

those results that we have proved in the past two lectures for topological vector spaces.  

Choose a balanced neighbourhood  of  which does not intersect , alright?
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Put  which is same thing as , because the image of  is inside , that

is why it is  alright.  is a neighbourhood of . Because  is continuous, since 

inverse is linear also, linearity there is no problem what we are trying to prove is continuity of

 inverse. It follows that this  is a balanced set also ok.

Some some scalar multiplication times something is contained inside etc, you have to check

this.  Since   is  balanced  neighbourhood,  it  follows   is  also  balanced.  So,  scalar

multiplications comes here because  is a bijection ok.

 times some vector is alpha times  of some vector so that is all I have to use, in order to

show that  is balanced implies  is balanced. 



In particular if  is a point inside , then the entire line segment ,  will be inside . This is

the property of balanced set  we have seen all  the time ok. So, this implies that   is star

shaped at , all the line segments are there therefore, in particular  is connected ok.

Now,  is empty, because I have started with  is empty ok. So, you know that

the unit ball inside   ok, whether it is   or  , the unit ball always separates the wholes

whole , ok. Namely those things which are strictly inside the ball and those things strictly

outside. So, there are two disjoint open subsets right? So, since   is empty and   is

connected, it follows that   must be contained in the open unit disc  in   with center  

right?

Now, given any , it follows that if you take  that will be  by linearity of

 inverse  ok.  But,  this  ,  that   is   is  ,  that  is   because   will  be

contained inside . Because  is contained inside this unit ball  ok? (I can write this as 

, but that is not correct because I do not know whether  is  or .)

So, it depends. It may be  or . So, I have just written as , unit disc here. This implies

that, now we see  is contained in . This implies  inverse is continuous at 

belonging to . 

See how connectivity finally has been used to show that the inverse is continuous alright?

So, this is one important theorem. 
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Well, next I have prove the other part, namely, suppose  is Hausdorff. Then I want to show

that  equal to  namely  is closed also, that is what I have to show. Given  belonging to

, since  is a balanced nbd of  in , it follows that there is a non zero  such that  is in .

After all mutliples of  will cover the whole of . Since scalar multiplication by  is a

homeomorphism, it follows that  is an onbd of .  

Therefore,   will be inside  contained in the . But  is equal to  ,

because  is nothing but  ok. So, if we apply  of  inverse is what the whole thing

right.  is nothing but . 

But,  this   is  contained inside,   here.  and then take the closure ok.  But   is

compact. See compact subset of , right, see  is a bounded subset already inside the unit

disc its closure is compact ok. So, it is compact subset of . See once  is compact  is

also compact, because  is anyway some scalar.

So,  will be a closed subset of , because it is compact and  is Hausdorff. So, this is

where we are using first time that  is Hausdorff, that compact subsets are closed that is what

you have to use ok. So, therefore,  is inside , there is no need to take the closure here,

 is inside , but  is after all inside , because  is , ok.



So,  is inside , that is what we have to do. So,  is contained inside  therefore,  is equal

to , alright. So, closure property follows by again Heine-Borel theorem, we have used here,

viz., that closed and bounded subsets of 's are compact. Many important things have been

used here alright.
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So,  let  us  go  to  the  next  result,  for  which  I  will  make  a  temporary  definition  of  local

compactness. Later on, in part 2, we will study local compactness on its own for arbitrary

topological spaces.

Here it is a tentative definition of local compactness, for a topological vector spaces.  

 is locally compact if there exists a neighbourhood   of   such that the closure of   is

compact. So, there is a compact neighbourhood for  element, that is all, ok. So, that is the

meaning of local compact alright?
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With  this  definiton,  we  make this  final  result  about  topological  vector  spaces  and  finite

dimensionality.  You  see  we  have  already  proved  that  a  normed  linear  space  is  finite

dimensional if and only if the unit sphere in it is compact.

In the topological vector space situation, there is no unit sphere, there is no way, there is no

concept of unit sphere because there is no metric. So, the local compactness is an indirect

way of bringing that ok. Once unit sphere is compact the disc was compact. I think I have

been telling that for normed linear spaces, unit sphere is compact is equivalent to saying that

 has a compact neighbourhood.

And that compact neighbourhood makes sense,  that is the definition of local compactness

here. So, we have brought back the ideas from metric spaces,  a compactness property can be

always generalized. So, its local compactness has come here ok. So, that is what it is and the

expected theorem here is that now every locally compact vector space is finite dimensional

and conversely. Converse we have already proved.

How and where? Because any finite dimensional vector space we have just proved that it is

isomorphic to , linearly isomorphic to . So, in particular it is homeomorphic to  and

therefore, we know that it is locally compact ok. 



So, we have to prove that if it is locally compact then, it is finite dimensional. Now, the proof

of this one maybe a little longer I am not very sure, but it is much more elegant, than the

proof for normed linear spaces ok. It is more or less canonical proof here, so just observe that

ok?
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The 'if' part is an easy consequence of an earlier theorem that we have proved, that every

finite dimensional vector space in a topological vector space is isomorphic to . So, let us

prove  the  converse.  Now,  let   be  Hausdorff  and  locally  compact  ok,  did  I  mention

Hausdorffness in the hypothesis? Hausdorff is yeah it is Hausdorff and locally compact, ok?

Hausdorffness is a must here ok, locally compact and finite  dimensional vector space are

automatically  Hausdorff  right?  So  I  do  not  have  to  worry  about  that.  So,  choose  a

neighbourhood , such that  is compact that is local compactness. So, we get finite number

of  vectors   belonging  to   such  that   is  contained  inside  finitely  many

translates of half . Like half the balls around zero. 

 plus this one would be a neighbourhood of , 's are taken all over  they will cover ,

but then you can choose finitely many , so set  going to  to ,  will

cover  the  whole  of  ,  ok.  So,  let   be  linear  span  of  .  Then   is  finite



dimensional, because it is spanned by only n vectors. Therefore, by 5.56 theorem just we

have proved  is a closed subsets of , here we have used Hausdorffness of .

(Refer Slide Time: 18:10)

 being finite dimensional subspace, is a closed subset, this is the previous theorem, part of

previous theorem alright. Now, look at  , which is contained inside   obviously, and that

will be contained inside , because what is  contains all the 's. 

So, this whole thing I can replace it by one single element,   which is very huge actually

compared to what I have written there.  is contained , right?

Now, we keep using the property that  is a vector subspace, which is a strong property. It

follows that if you take half of , that will be contained in half of  plus half of half of 

right? But, half of  is  itself, because it is a vector space right?

So,   is contained inside  . Therefore, start with   which is contained in

 which in turn is contained in . Now, I can combine 

into just , again because  is a vector space. to get that  is contained in .



You repeat this process now.  Next time what we will get?  is contained inside 

. And next time it will give . So, this is just repeating this process that is all, right.
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So, what is this? This is that we get   is contained inside  for every . That

means of  is contained inside the intersection of all these. 

This sequence  , is a decreasing sequence of sets right? So, it is intersection of all

these things, because it is contained inside everything, but you remember that this forms a

neighbourhood  system  for  ,  this  is  what  we  have  proved  last  time.  Therefore,  this

intersection is nothing but the closure of , but the closure of , what is that? Closure of 

is  itself right, since  is closed. We conclude that  is contained inside .

The moment an open subset, non-empty open subset is contained inside a vector subspace,

that vector subspace must be the whole of the space ok. So, this follows from our  lemma that

we have we already used, namely   is contained inside powers of   times  , union of all

those things. Any increasing sequence of numbers will do this job ok, increasing sequence I

mean strictly increasing converging to infinity, I should say ok.



Well that is same thing as now, it is contained inside union of all  because  is contained

in , but  is  itself, so it is union of  is just . The entire vector space is contained

inside the subspace; that means, they are equal. 

So, what we have to done? We started with  , we produced some finitely many elements

with certain properties and then we took the linear span   of those elements and then we

showed that  is equal to .

Anyway; so what we have done is that  is finite dimensional ok under the assumption that it

is Hausdorff and locally compact, alright? So, two very important theorems we have done,

very nice and elegant theorems.
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The third one is again curiosity ok, see you have proved that a topological group is a regular

space  without  any  further  assumption.  Now what  is  the  best  thing  you  can  say  about  a

topological vector space without any further assumptions? 

So, here is one, namely every topological vector space is completely regular. By the way it is

very important, complete regularity, though in this course, you could not see any of these

importance. 



One is about embedability theorems. Because continuous functions are coming there right.

Another one is what is called a uniform topology. So, this we will not be able to discuss here.

So, there is something important in saying that something is a completely regular and that is

it. So, every topological vector space is completely regular.

If we assume , it will be  ok. So, this is just for a little short of normality, if we would

have proved the normality then that would have been even great, but that is not true generally

perhaps ok. 

So, I am not very keen on that one. Now, let us prove this one ok it takes a little more time,

but let us prove that in a topological vector space  , given any point and a closed subset I

must find a continuous function. But, you do not have to do this for arbitrary points, because

we are working in a topological vector space.

A point can always be specialized to be  ok, given any neighbourhood  of , we must find a

continuous function  on the  entire vector space  to the closed interval  such that 

is  and  is singleton one.

The entire complement of the open set is goes to one point, the  goes to another point. Those

two points can be chosen anything arbitrarily, but we will  conveniently choose them  to  

and the interval also the domain to be also  ok. You could have denote  and so on,

there is no problem this is what we have to prove ok.
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So, somewhat like in the theorem of Urysohn's, we have to work, but it is easier than the

proof of Urysohn's lemma. Start  with   equal  to  . Inductively, we are going to find a

sequence of open subsets ok. Now, we are using topological vector space condition here. So,

it is easier than doing it in an arbitrary normal space.

Inductively choose symmetric open neighbourhoods  of , such that  is contained

inside  . Remember symmetric means   inverse is  , but here inverse is  . So, I

could have written  also, it will be same thing ok?  or  is same thing

because  is symmetric. Symmetric here with respect to the addition ok?

So,  is contained inside , for every. How to get that?  Start with , take a 

which has this property  is contained inside  and keep doing that ok.

Now, let   denote the set of all dyadic rationals in the interval   including  but not  .

What are dyadic rationals? Each  has a unique representation as a  ok? So, it

is a unique representation here ok, where all these , the denominators are either  or  ok,

and only finitely many  are non-zero. This is my definition of these dyadic rationals. I

have given you complete description of this, what dyadic rationals in  mean. 



Now we define a collections of subsets   of   indexed by some non negative numbers.

Put  equal to  if  ok? And if  is inside  contained in , then put  equal to

sum ; look at these numbers  either  or ,  they are the scalars right? So, I can put

 this makes sense because we are working in a topological vector space. The 's are

subsets of  times  is just the , that is a  vector and if  is , then it is just , ok?

Then you are taking a finite sum of all these subsets. So, what I should mention here is, only

just finite sums make sense. 

Only finitely many 's are non zero. I have put infinity here, as if convergent sequence

and so on. But, for dyadic rationals , only finitely many 's are non-zero ok. Sicne I do not

know how many that is why the upper range is put infinity. So, this is just  to  and then 

going to infinity all of them are there, that is all. 

So, 's are  and most of them are  here. So, this is a finite sum ok? So, this make sense, and

since each  is open and each  will be open subsets, alright.

We first make a few observations on the subsets .
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Each   is an open neighbourhood of   and   is contained inside   that is by

definition. See  is contained inside  is also contained inside  contained

in  and so on. So,  is contained inside , this is important. 

If  inside  then  will be contained inside  ok. So, these are similar to what you

have done when proving Urysohn's lemma somewhat similar, but easier steps here ok. So,

how I  see  this  is  true?  For  each  fixed  ,  there  are  one  's  right? Choose  the

smallest , so that  is  and  is . 

Among the two sequence of   and , you keep comparing the corresponding terms,

the first they differ, we must have  and , because . Then  will be

contained inside   and   will contain  , it is at least as big as that. That

means,  is contained in .

Next, recall that if   is symmetric neighbourhoods then for any subset  , we have proved

that   is contained in  . This is what we have seen for topological groups itself ok.

Given  , choose   such that   which is some positive number. So,  ,

 will be some positive number. So, choose  sufficiently large. 

Then  will be contained inside  ok. (See what is this notation?  and

so on we know. I could have just put a suffix here, but I have put a bracket here, just because

I have indexed it with  rather than , just for emphesis. Correct notation would be . )

Anyway,  is contained in  which is contained in . For to get  from  you

have add at least  and hence  will come as a summand in , alright?

 So, (a), (b), (c) we have proved.
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Now, we define the function  on . For  in , let  be equal to infimum of ; for  in

 such that  is in  provided this is set is non empty. You see if there is at least one

dyadic rational  such that  in  then  will be some real number in . Otherwise,

we have defined  to be the whole of remember this will be the whole of  and  will be

equal to . In either case,  makes sense.

Therefore it follows that  is  because the moment it is outside , there will not be

any element  such that  is in  and  is the whole of . So, that infimum of this

will be . So, this is by definition. 

Note that  contains , and  is  ok? 

 is the sum of all these, but when , there is only one set on the RHS there right.

So, that will be .  is , for all  this is case. Therefore, if  belongs to  for all ,

infimum will be . So,  is . 

It remains to prove that why  is continuous. We have proved that   is  ,   is  ,

that is fine. Now, continuity of  is what we have to do. Note that there is a complete analogy

between Urysohn's lemma and this one, if you had not understood Urysohn's lemma you will



not have been able to prove this one ok. I do not claim that if you have understand Urysohn's

lemma you would be able to prove this one, but now you have adopted those ideas in the case

of topological vector spaces. So why  is continuous?
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Ready? Start with any point   in   and put  . And take   ok. Assume  .

Choose  and  belonging to , such that . What is the definition of ? It

is the infimum of on some set  ok. So, therefore,  you will have   and   inside the dyadic

rationals, such that   right, which less than  . So, between   and  ,   is

larger,  is between them. 

So, first you choose,  here between  and  and then you can choose  between  and .

This  is  possible  because  of  the  definition of   and  density  of  dyadic  rationals.  There  is

nothing more than that ok. So, then   will be contained inside   and   is not inside

 ok. Because  is , which is bigger than . So,  cannot be inside . If it is inside

, the value of  would be smaller than , right? This means that if you take  equal to

, ok, then   is an open neighbourhood of   ok and   is contained inside the

interval . So, the set cannot have anything less than . So, the infimum has to be bigger

than or equal to , so it is in the interval .



It cannot be bigger than 1 anyway, all  of them are less than equal to   only ok.   is

contained inside , ok. 

This  already  completes  the  proof  of  continuity  in  the  case  ,  we  have  found  a

neighbourhood as required.  

I do not say , I start with , put   that is all ok? It may happen that this ,

then this argument says that already the continuity of the function  at points  such that 

equal to  is proved ok. That is a special case alright.

Now, you assume ; Then we are inside dyadic rationals ok. Choose   belonging to  

such that . (You can assume  is sufficiently small so that  is positive

and  is less than .) Given any , I must produce an appropriate neighbourhood ok, that is

what I have to do. Then it follows that  is inside  because . Now, for points of

,  is taking values between  and . Once  is already in ,  is smaller or equal

to  .  If  it  follows that  the same   as before,  the same thing here intersection   is  a

neighbourhood of , such that  will be contained inside the interval 

.

Of course the case when  remains, but then that is similar to the case when . We

then ignore  and take the nbd . It follows that  is contained in the open interval

.  

(Refer Slide Time: 42:27)



(Refer Slide Time: 42:40)



(Refer Slide Time: 42:44)

So, that completes the proof of the theorem and  the whole  plan whatever I have made  for

part I of this course. 

I just repeat what were the reference books here. I was completely influenced as a student and

even today by the book of Simmons; George Simmons. And in spirit, though not in content, I

have followed this book. For example, the definition of  space,  space normal space and

so on. Normal and ,  and so on. My definitions of these concept differ from that given in

Simmons book.

So, be cautious about that, I have already told you so earlier. So, be cautious about that.

The  book  by  Steen  and  Seebach.  This  book  I  have  refered  to  is  Counter  Examples  in

Topology. This book is now available online and from whatever I had seen it has expanded

much.  So,  since 40  years  back  ok,  it  has  expanded  quite  a  bit.  So,  so  this  is  good not

necessarily for learning topology, but as a reference book it is nice that is what I have said. 

So, my second favourite book in topology, we may say is Kelley's book which is a very

fantastic book, but difficult to read as compared to Simmons. Simmons' was a pleasant one

but I enjoyed Kelley's book also. 



Later, when I joined IIT Bombay, I came across a book my colleague had written, a nice

book written by K D Joshi, an Introduction to Topology. So, I have borrowed material from

this book also. I have high regard for this book. So in fact, the existence of this book stopped

me writing a book on my own on point set topology alright.

Before that  at  TIFR,  I  had  come across  another  book,  it  was  my third favorite  book in

topology, Hurewicz and Wallman's Dimensional Theory. This is a very specialized book, but

it teaches you topology like anything, so this is a wonderful book ok? It deals with dimension

theory. And then there are some nice books, which I have just browsed through. I have not

studied them and so on.

One is  by Armstrong.  Another  one by C Wayne Patty ok.  So, here you can see Rudin's

Functional  Analysis,  which I used for topological vector spaces and so on ok. So, that is

roughly what it is; so you can also look into some papers here, from which I have borrowed

material. All these books they are good books Dugundji and what are the other ones, here

well that is it. Satish Shirali's nice book on Metric Spaces ok.So, that is what it is.  

However, I want to tell you, I remind you that I am going to give notes and you have already

the notes with you, Just to get through this whole course you do not need anything else. So,

you just go through the notes properly, work out the assignments and you are done, ok. So,

yeah, so that is all I wanted to tell you about this.(Refer Slide Time: 46:57)



So, finally, I would like to end up this one with a lot of thanks to the NPTEL team, to my

own team of  tutors,  whose  help has  been  extremely  useful,  extremely  great  help,  moral

support and so on in bringing out this course to you. And also big thanks to all of you, if you

have stayed with me so far. I hope I will see you in the 2nd part also ok.

Thank you.


