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Welcome  to  module  60  of  Point  Set  Topology,  Part  I.  We  shall  continue  the  study  of

Topological Vector Spaces today. As earlier throughout this section, we shall fix   to be a

topological vector space. I will not use this ah notation for anything else. 

We have results parallel to the fundamental lemmas we had for a topological group, obtained

merely  by  changing  the  multiplicative  notation  to  additive  one.  Because,  if  you  have

topological vector space , together with the operation  and the  element there, will give

you a topological group which is abelian.

So, we shall  denote them by additive notation plus instead of  the multiplication dot,  the

multiplication will be there only not from  to , but only from  to  now. So, all

the statements which were multiplicative for the topological group with that we have seen,

will now be obtained by just changing them to additive notation. 



In addition, because of the scalar multiplication and the continuity of that, we will have many

other important results ok. So, for all those things, the new ones, I will give you hint or a full

proof of those things, but those which we have already got for a topological group as such,

those I will only restate if at all.
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So, with this, the first theorem here is again a list of statements: (a), (b), (c), (d), (e), (f) which

are all easy consequences of the definition of a topological vector space.

Let   be  topological  vector  space.  Start  with  any  .  Then  all  the  following

statements are true:

(a) Let   be a neighbourhood system of  , then for any subset   will be equal  to the

intersection  of  all   inside  .  Remember  there  was  exactly  similar  result  even

stronger intersection of   multiplicative notation in the case of topological groups  or

you can take  and so on ok. 

And, you do not have to take all the neighbourhoods, just a neighbourhood system will do

ok? So, that is also an easy consequence anyway ok. 



(b) So, the next one is  is contained inside . Once again the corresponding thing

for topological groups was that   is contained inside . So, same thing is true for this

one, I do not have to elaborate this one.

(c)  The  next  one  is  new  to  topological  vector  spaces  only.  Because,  now  I  am  using

convexity, this convexity notion was not available in a topological group. Let  be a convex

set then both  and interior of  are convex.

(d)  is balanced implies  is balanced; further if  is in  interior (which is same thing as

saying that   is a neighbourhood of  ), then interior of   is also balanced. See here unless

you have  here you cannot claim that one ok?

(e)  The  fifth  one;  if   is  bounded  then   is  bounded.  So,  I  have  taken  convexity,

balancedness and boundedness ok.

(f)  If  is a vector subspace, then this closure is also vector subspace ok. 

So, statements (c), (d), (e), (f) are new to topological vector spaces; (a) and (b) are old one

only right?
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Let me just  go through them again.  In the context  of  topological  groups,  you can check

Lemma 5.14 ok. We have proved that  is equal to intersection of , such that  is a

neighbourhood of . 

If you take all the neighbourhoods then this is just in the multiplicative notation you have

done; so, it is true for this one also. But, then you can just restrict it  to a neighbourhood

system that will be a smaller family of same members of this family itself, that is smaller

family. So, intersection has to be larger ok.

But, here the smaller family has the property that each member is contained in some member

here therefore,  the  equality  occurs.  So,  the   is  directly  from Lemma 5.14 for  products

namely  is contained inside , which will become now  contained inside ,

ok. 

Now, come to statement (c). If  is convex I must show that  is convex. First of all, for any

, we have  is equal to . If  is a homeomorphism and therefore  is equal to .

In particular, this is also true for  in place of . So, I can take sum of these two which is

nothing, but   plus . now we can use (b) to conclude that this is contained in the

bar of the sum. Finally, since  is convex, we have  is equal to . No problem

ok. So, this proves the convexity of , ok? 

 Now, prove the convexity of the interior: Observe that   interior plus  interior is

already contained inside . Because,  is convex.  But,  now  interior is an open set and

similar;y,  times this one is also an open set. Maybe one of them may collapse to a single

point that is the caution. In that case,  either  or , it is not an open set, but then

the containment of LHS in RHS is obvious. So, we can assume that .   

Therefore,  this  part  is  always  an open  subset  of   and  hence  it  is  contained  inside  the

maximum  open  subset  that  is  interior  ok.  LHS  is  contained  inside  ,  but  this  is  open

therefore, it is contained inside  interior. So,  interior is also convex.
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(d) Now, let  be balanced. Then for any scalar  such that , we have  is contained

inside . So, it is contained inside  also ok. Now,  is a closed set right? Therefore, if you

take  which is same thing as  ok,  is the smallest closed subset containing  must

be contained inside  ok. So, that proves that  is balanced. 

Further, now we assume  is in the interior of . Then  interior is contained inside ,

that is contained inside . If , then  interior is open subset and hence it is contained

inside interior of .

On the other hand, if , then this will reduce to single point , and is there in  interior

by assumption, (otherwise there will be problem). So, you are done. So, this proves that  

interior is also balanced ok,   interior in both the cases is contained inside inside  , but

then it is contained inside  interior. So,  interior is also balanced.
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Now, come to (e).   Let us go back at that statement (e) here:  If   is  bounded then   is

bounded That is what we have to prove. What is boundedness? Given a neighbourhood  of

identity ok, I must produce   such that   implies   is contained in  . That is

what I have to do.  is bounded means that ok. 

So, first I apply regularity of the topological vector space which we have proved earlier ok.

Given a neighbourhood  of , by regularity we can choose a closed neighbourhood  such

that e is contained inside  contained inside . Given any neighbourhood there is a closed

neighbourhood contained inside that. You take this one to be a closed neighbourhood ok. 

Now, apply the boundedness of  to get an  such that  is contained inside  for every

, ok. Therefore,   is contained inside bar of   which is nothing to  . But   is

closed and so  is  which is contained in  by the choice. Therefore,  is contained inside

 for every  ok. So, the proof of that  is balanced, it is done ok. 

(f) Now, the last one, it is a statement that if something whatever notation I have taken let me

use the same notation. 

So,  is a vector subspace then  is a vector subspace. The proof is similar to what we had

for topological groups also ok. But, here, you can look at this one, the proof of (c). Here it is

only for the scalar between  and . But, the entire discussion you know, can be applied to



any scalar here ok because, now I am assuming that instead of , I am assuming  is a vector

space already. So,  will be already inside ; therefore, the same proof will work here for

(f).  If   is closed,   is  a closed under addition and scalar multiplication that  is a vector

subspace, then  is also closed under addition and scalar multiplication is what we have to

see. 

If   and   are  in  A,   is  there,  that  is  what  you have  to  show right?  Instead  of

. So, the proof is  the same. With the extra assumption that instead of  ,  an

arbitrary convex set so, we now have a vector subspace . That compeltes the proof of the

theorem. 
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Let us go ahead, to the next theorem. Let  be a neighbourhood of  in .  The first claim is

that there exists a balanced open neighbourhood  of  such that  is contained inside . So,

from  an  arbitrary  neighbourhood,  we  can  improve  it  to  become  balanced  open

neighbourhood, openness is obvious anyway, balanced neighbourhood that is a whole idea.

Further, if this  is convex then in statement (a), we can choose  to  convex as well; that

means,  is balanced and convex ok.



That  is  every  topological  vector  space   has  a  local  base  consisting  of  balanced

neighbourhoods, that is the statement (a). If   is locally convex; that means, it has convex

neighbourhood  like  this,  then  it  has  a  local  base  consisting  of  balanced  and  convex

neighbourhoods. Here the important thing is you just assume one convex neighbourhood then

there is a whole system of convex neighbourhoods ok? That is the whole idea here.

Student:  Sir.  This  balanced  open  neighbourhood,  this  concept  is  it  something  similar  to

symmetric neighbourhoods in topological groups?

Teacher: It is just symmetric is just one single thing right, inverse corresponds to   here

right. So, that is.

Student: Yes, sir.

That is then much weaker there.  In a topological group you could not do anything more.

Scalars allowed are only  and , that is all right, inverse is same as minus right. So, here is

a stronger symmetry right, you may say only for unit scalars also that is also symmetry, but

this is much more stronger ok.

It does imply symmetry, but it is much much stronger ok. So, I told you that this is almost

like bringing concept of the balls inside a metric space ok. So, these things will play the role

of open balls in a metric space. So, we are bringing them through a back door, it is like that

ok. So, they will play the role of the open balls; so, that is much more stronger than just

symmetry ok?
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So, by continuity of scalar multiplication at  , the moment you have some neighbourhood,

there exist an open neighbourhood  of  such that if  is positive such that  is contained

inside   for  all   with  ,  ok?   is  a  neighbourhood,   goes  to   under  scalar

multiplication ok. So, you can control the scalar that is the whole idea.

There is a positive  such that  would imply the whole image  is contained inside

. So, this is by continuity of scalar multiplication alright. So, all that we are doing is the use

of scalar multiplication here. Now, let  equal to union of , where . The first part

says that this family is non-empty, there is at least one .

Now, you take all such  which satisfies this and . There may not be any right? So,

you have taken all such things where at least one such that   is contained inside  , ok.

Now, you take union of all of them, then   is an open neighbourhood of   ok, such   is

contained inside  and  is balanced. We must put that , I would like to have this one

contained inside , but that is the condition here on alpha ok?

So, I would like all this 's also contained inside . So, in any case being the union of all

open subsets 's,  is open.  itself will be now balanced, why? Because, if if multiple say

beta with  will be contained inside union of , but if multiply  by  where

,  will be automatically less than equal to .  



So, those things will  be contained inside this one again,  that  is  the whole idea. So,   is

balanced and it is an open subset contained inside  and containing . 
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Now, in the second part, I want it to be what? In the second part, what is there? I want it to be

a convex subset as well right? 

So, suppose one of them is convex, that  itself is convex here already. Now, you take  to

be the intersection of all alpha , where  ok. So, in the case the vector space is real

vector space, this just means that  and , that is the way we have done to get a symmetric

neighbourhood remember that?

So, here you have to take   only to saturate it, intersection of all of them ok. Now,

check that  is convex because  is convex to begin with. So, this we have to check that this

will be also convex ok. Hence, interior of  is convex that is what we have seen right, if  is

convex, interior of  is convex was one of the part of the previous theorem.

Now, let  contained inside  be a balanced neighbourhood of . In part (a), we can take a

balanced neighbourhood of . Then, if , then you can write  as ,  and 

cancel  out,  but   is  contained in  ,  because   is  balanced and   is  .  So,   is



contained , but  is contained in . Since this is true for all such , it follows that  is

contained in  which is the intersection of all 's.    

Therefore,   neighbourhood of   ok, because   is a neighbourhood  . So, if you take the

whole of interior  that will be a neighbourhood of .

It remains to show that interior of   is balanced alright? Interior is always convex. Now,

interior is balanced is what I would show. For this it suffices to show that  itself is balanced,

since we shown that if  is balanced, then  interior is balanced ok. 

So, to show that  is balanced take ; write , where  and . Any

 can be written as  right times , that is why you can write , where  and  will be

between  and  non-negative ok.

Once you write like that  is , it follows that  is equal to  is equal to (you can

push   inside  the  intersection)  intersection  of  ,  where  .  That  is  equal  to

intersection of  where  and hence is of modulus . 

But,  is a convex set to begin with ok, and containing  and hence  is contained inside ,

 consists of all the line segments from  to points of points of . So, all the  will be

also inside . So,  is contained inside instead of this , I can just write  , right. Once, I

write , this whole thing will be nothing, but  right,  is contained inside . 

Thus, what we have shown that, in general  balanced neighbourhoods form a fundamental

system of nbds of . If  is locally convex then convex and balanced neighbourhoods form a

fundamental system of nbds of . ok?

These are fundamental results. Now, we slowly arrive at some concrete results.
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Every  compact  subset   of   is  bounded.  So,  you  see  I  told  you  that  these  balanced

neighbourhoods are playing the role of balls in a metric space. 

So, now, we can talk about compact subsets being bounded just like in a metric space ok. Of

course, our notion of boundedness is also different here, this boundedness is stronger. That is

what we have already remarked the last time.
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What is the proof? Proof is very easy, given a neighbourhood  of  inside , we have to find

some m positive such that  implies  is contained inside . 

For any neighbourhood, you find an  this this property that will mean that  is bounded,

this is the definition of boundedness ok. Now, the previous theorem part (a) says that I may

assume  is balanced neighbourhood. Suppose, I do it for a smaller neighbourhood, which

balanced neighbourhood smaller than , the same statement will be true for  also ok?

So, I can assume that  itself is balanced. But I am just using this  is a neighbourhood of

 which is balanced and contained inside  . So, we shall now prove find an   such that

 implies  is contained inside . If you prove that then it will be contained inside 

also ok. 

Now since   is a balanced neighbourhood, now   will be contained inside   contained

inside  and so on.

So, this will be an increasing sequence. Just like expanding balls (centered at the origin). See

in  what you would have done? You would have taken the ball with radius   say, it will

given you a sequence concentric balls right? one contained inside twice of that contained in 3

times that and so on. This is precisely the property that I was hinting at from lemma 5.41 or

whatever.

So, remember, if we have an increasing union of any neighbourhoods, where these numbers

go to infinity then this whole thing is covering the entire vector space . Just like in the case

of  and so on. So, this is what is happening in a topological vector space also, that is from

5.24. 

Now  is a subset of  anyway, but  is contained inside a union of 's; so, that is 5.24.

But,   is compact and these are open subsets. So, you will get one of them covering the

whole thing because, it is increasing union ok. So, we get  such that  is contained inside

. Now, you take  to be equal to this , if  again using the fact that  is balanced,

we get  will be already inside ,  will be also inside  ok, because  here. So,

this  can be chosen as . That completes the proof of the theorem.
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So, one way, you have seen the usefulness of the  increasing union. And now there is another

parallel  concept.  Decreasing  union,  decreasing  intersections,  balls  of  smaller  and  smaller

radius right. So, similar thing here if   is a bounded neighbourhood of  , then  ,

where  ranges over all the natural numbers forms a neighbourhood system for .

It is just like the balls  , where  , is a neighbourhood system. Instead of that you can

write  also or then you can  also right. So, similar to this is what we are going

to prove  etc epsilon into 0 etc are more difficult. 

Just this lemma is nice and easy and that is enough, because this sequence `converges' to 

ok? So, let  be any neighbourhood, recall, by definition of boundedness, boundedness of 

implies that, there is another way of looking at it, instead of there exist  such that 

etc, you can invert the whole thing right? 

There exist  such that  implies  is contained inside  ok, if  is contained inside

, where  is one definition, it is equivalent to  implies  is contained inside .

This  can be chosen like this. Once you have that, all that you have to do is choose  such

that , ok. 



Then   for some  large, that will be contained inside  . For every neighbourhood

some member is here inside , means that this is a neighbourhood system over ok? That is

the lemma. 
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So, we shall use all these things in a neat way to, you know, to derive some nice results.

Another easy and fundamental result here is: Take any two vectors ok, take any two vectors

in . Let  be any topological space and  from  to  be any two continuous functions

ok. So,  and  are continuous functions into the scalars,  is a scalar field on which  is a

vector space ok? Then you take the linear combination of , (that is a vector inside )

plus . 

This is a linear combination right, but it is a function now as  varies on , into . So, this

function is continuous. These are elementary things which we have observed inside  and

so on right. So, same thing we are observing in any topological vector space. What is the

proof? Proof is precisely this one, namely scalar multiplication and additions are continuous

that is all.
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Now, we have an easy corollary here. Every linear map  to  is continuous, where  is any

positive integer. This is a special case now ok, Earlier  was an arbitrary space ok. Given 

and   continuous functions, then we proved the linear combination is continuous. Now, I

want to say that every linear map from  to  is continuous. So, to talk about continuous

linear maps, you need to have both domain and codomain as a topological vector spaces.

However, you cannot replace the domain here by an arbitrary topological vector space. From

an arbitrary topological vector space to an arbitrary topological vector space, a linear maps

may not be continuous ok? That is why this theorem, this corollary is important. It says that

 which is nothing, but a finite dimension vector space over  , then every linear map is

continuous.  Understand  the  importance  of  this  one.  If  you  replace  this  one  by  arbitrary

topological vector space then it will makes sense, but it will not be true.

Proof is easy. Similar to what we do for  and any normed linear spaces, once we have that

lemma ok?
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Let  be any linear map alright? Any linear map into a vector space from a vector space is

determined by its values on a basis. So, let   be the standard basis. (You could

have chosen any basis, no problem.) Then, I will look at the images of  under . 

So,  put   ok?  Now,  every  element   belonging  to   can  be  written  as

, where 's are scalars inside  right. Then, we know that by linearity 

is nothing, but , right. Not only that the coordinate functions inside

 to  ,   going to  ,  this  is  the   coordinate  of  ,  right?  They  are  also  continuous

functions. Therefore, all  that I have to do is  iterate the previous lemma which is for two

functions.

 going to  is a continuous function times  plus  going to  is continuous times ; so,

add them. So, first we get sum of two terms is continuous, next third one is continuous and so

on. What you get is  going to  is what?  etc,  is what? . 

You know as a student, because we are all studying finite dimensional vector spaces only,

linear maps are always continuous. But, suddenly when it goes infinite dimension and linear

maps may not be continuous, that was a realization ok? So, it took some time, I really thought

that I can prove that every linear map is continuous, but that is not the case ok. So, I want to

emphasize that fact here. 



So,  let  us  stop  here  today.  So,  next  time  we will  reap  a  good harvest  and  prove  three

important theorems and that will be the end of the course. So, today we will stop here.

Thank you.


