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Welcome to module 58 of Point Set Topology part 1, we continue our study of topological

groups. In the last module we have already noticed that the topology of a topological group is

regular. 

This we actually proved while proving even a stronger separability property for topological

groups. Several  authors are not satisfied with this much. In fact,  there are two schools of

mathematicians or we may say only topologist, one which sticks to Hausdorffness and other

one sticking to regularity.

So, the Hausdorff-school people especially the Bourbaki oriented people, they would like to

have  every  topological  group  Hausdorff.  So,  right  in  the  beginning  they  have  put  this

hypothesis, a Hausdorff space with a continuous multiplication blah blah blah. But we have



not put that one. So, let us see how you can guarantee Hausdorffness with some minimal

assumption ok.

So, we have already noticed that the moment it is , it will be Hausdorff  right. So, now

we would like to show that the  is just enough ok? 
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Since  from  to given by  going  is continuous, and the inverse image of the

 is the diagonal   in  . Hence if   is closed, it follows that the diagonal will be

closed, so  is Hausdorff. That is clear. 

So,   is enough, to conclude Hausdorffness. Even   will be guaranteed by  , that is the

first thing that we want to assure today ok.
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So, let  be a topological group with its topology satisfying  axiom, automatically it will be

. All that we want to show is that it is . Just now we have observed  implies actually ,

but even that is not necessary because you have already proved its regular. Regular plus  is

,  implies  right? So, so let us just prove that  imples  ok.
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So, what is the meaning of ?  means given two distinct points you may be able to find an

open set around one of them not containing the other, but which one which one of the two



points it will contain you do not know, That is a point. Whereas, if you can be sure that you

can do it for both the points that is , but in the case of a topological group you do not have

to worry about all  the points,  you should just show that   is  closed.  Then because  the

translation homeomorphisms are there all other points will be also closed ok? This we have

observed earlier.

So, all that we want to show is that  is open ok. What does that mean? For each point

, we must find a neighbourhood  of  which does not contain . So, that is all we have

to do. The only problem is for some  we may find  which contains  , but not  , but for

some others it may be it may contain  , but not  , ok? If for all  , we can find a  , all  

means for all  inside , not equal to , if we can find an onbd  of , which does not

contain , then we are done. 

So, consider those  such that  contains e and not , alright. For such a  what do you do?

Put   equal to   intersection  . See now, just now I assumed that   contains   the

identity element. So,  that will also contain  right? Inverse is just the image under , right

inverting all the elements. So,  will be there in both of them, so  will be in the intersection.

So,  will be a neighbourhood of , right. It will not contain  right? If  is here then 

will be here and vice versa. So, so  is not here, is this g is smaller than  and this one. So, it

will not contain  either, first it did not contain , but now it does not contain  because

we have taken the intersection of both of them. 

Therefore,  is a neighbourhood of , which does not contain . Because if this  contains

 would mean that there is  inside  is the only way you can get  right. So, that is

not possible. 

So,  does not contain . So, we have got a neighbourhood of the first kind namely, this  is

an onbd of   and   will be inside   ok. So, that is the trick here, just   implies   and

therefore, . 
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Now, you may suspect that every topological group actually satisfies  axiom also, in which

case, we should be happy. After all, we wanted to put minimal conditions. But that is not true.

That may be the reason why so many good authors assume right in definition,  Hausdorffness

also. There is a big area of mathematics wherein,  you know topological groups are used,

those topological groups are not . 

In particular I am giving you one example here, I cannot deal with all those examples. So,

especially  useful  in  algebra ok? My point  is  that  there many general  topological  groups,

interesting  ones  which  do  not  satisfy   and  that  is  why  we  should  keep  this  general

definition. 



(Refer Slide Time: 07:55)

So, here is the example: If  you do not know any ring theory,  it  may be a little difficult.

However, here we use just some  very elementary definitions of rings and ideals. You can just

assume the results  and go ahead ok. I  have no time to  explain what is  a  ring,  what is a

commutative ring with identity, what is a proper ideal and so on.

If you know these things then what I am going to tell is very elementary. So, you can just

remember that some such thing was there and then go deeper into it when you come across

into it  ok. So, now, just concentrate on what I am saying. If you do not understand some

terms here I have no time to introduce them. 

Let  be any commutative ring with identity, just like integers ok, just like rational numbers.

Rational numbers for a field so let us leave it. Just like integers you can say. And let  be a

proper ideal in , ideals are like , that is all.

Consider the family , of sets of the form obtained by shifting  by , that is , where

 ranges over all of  and  is natural number. So, I am taking  and so on ok, there is

a multiplication in the commutative ring. So, I  am writing    and so on,   is  the

standard notation for it. When  is an ideal, these powers will be also ideals ok?



Look at all these  . They will form a cover for the whole of  , because I am taking

. Indeed, they will form a base for a topology on . Let us call this  , in honour of

Krull, it is called Krull topology ok. So, you have to check that  is a base for a topology on

. Addition in the ring, is a commutative group right.

So,  addition  in  the  ring  becomes  a  topological  group  under  this  topology.  That  is  both

addition and subtraction are continuous.  That is the meaning of that this is  a topological

group. And we know that if  you take   equal  to  , here they will  form a neighbourhood

system for  . Intersection of all these neighbourhoods namely just  , where   ranges over

this one we know that it equal to , ok. It is a general fact about any topological groups.
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It follows that the Krull topology is  iff the  is closed if and only if this RHS is equal to

.  is what?  must be closed,  is closed means  is equal to ; the  is equal

to this one. This is the condition on , the ideal  should have the property that intersections

of all its powers. The powers of , you know, are one includes the next one and so on. So,

that should become  and that is a nontrivial condition this does not happen always.



For integers you can see that  it  happens.  Take a prime  ,  if  every power of   divides a

number that number must be , ok? So, in particular, if you take the ring to be integers, you

can see that the Krull topology is . That is all I want to tell you about the Krull topology.
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There is another aspect in algebraic geometry ok. What are called algebraic groups, they are

not actually  topological  groups ok? You have to  be careful.  Because  in  the definition of

algebraic  group,  we start  with an algebraic  variety  ,  with the  Zariski  topology,  namely

closed subsets are those which are given by vanishing of polynomial functions. And then on

 you are not taking the product topology.

It is not the product of the Zariski topology with itself, but it is the Zariski topology directly

on , which just means that the number of variables is doubled and all polynomials in

those variables have to be taken and so on. So, you have to be a bit careful there. You know

topological group theory that we are developing in this sequence of lecture, cannot be applied

to Algebraic Groups directly.

There may be several parallel statements ok, parallel definitions etcetera. You have to check

each of them correctly, properly and then only you can use them. Some of them are even



wrong ok. So, anyway none of them you would have proved, because all our proof depends

upon the topology on  being the product topology ok.

So, having said that, let us do something in our own definition, not Zariski topology now. 
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A subgroup   of  a  topological  group   is  called discrete  ok, discrete  subgroup,  if  as a

subspace  it  is  discrete,  it  is  already  subgroup there  is  no  condition  on  group level.  The

subspace topology must be discrete. Discrete means what? Isolated and closed ok, it must be

a closed subgroup, it must be a closed subset and each point must be isolated.

Note that a closed subgroup  of  is discrete, if and only if there exists a neighbourhood 

of  such that  is . As soon as  is isolated, again by using translations you can

show  that  all  elements  of   are  isolated,  take  any   ok.  You  take  the  same

neighbourhood ,   of  intersection with  will be just .

So, so this is easy to see that once singleton e is isolated in  will be a discrete subgroup.

Only you do not know whether  is closed so you have to put that closedness condition also.



So, why one is interested in discrete subgroups? It is a very old notion, you know classically,

interest in discrete subgroups arose in the study of doubly periodic functions ok. You can see

that the exponential function is already periodic, but that did not really give rise to this study

of discrete groups and so on.

But the same thing when you take doubly periodic functions inside complex plane ok, there

you have  to  start  worrying about  more general  things.  And right  in   itself,   itself  it

happens. So, why many many properties of this periodic function ok, they can be introduced

easily if you understand the discreteness of the periods, the set of periods becomes a discrete

subgroup that is how this is interesting.

Since you may not know what a periodic function is and so on, I will not elaborate on that

one. So, this much motivation is enough ok? So, here is an easy lemma first of all and then

we will improve upon this lemma later. 
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All non-trivial discrete subgroups of  are infinite cyclic. Typical example is integers sitting

inside  ,  ok? here I am looking at   as an additive group. So, it  is  a topological  group

additive topological group right?



So,   is a subgroup which is discrete. So, what this theorem says is everything is infinite

cycle,  as soon as you take any non-trivial discrete subgroup it  must be infinite  cycle,  the

proof is very easy ok. It suffices to show that every non-trivial discrete subgroup is generated

by one element ok; obviously, in the additive group of real number every element other than 

is of infinite order. Therefore, this is all enough, the group generated by that  one will be

infinite cycle automatic.

So, so what I start, I am looking for that generator. So, put  equal to infimum of , where 

belongs to  , non-zero elements of  . Look at the one which has least modulus ok,

what I want to say there are exactly two of them ok. If one element is there, minus of that will

be also there because  is an additive subgroup right.

So, look at the infimum of ; obviously, this is bounded below. So, infimum is well defined,

but this is a discrete group, ok. So, it is a discrete set of points inside r right.   is a

closed subset of . So, this infimum will belong to , therefore, this  is positive, it is

attained, means it is actually minimum.   

That means what? See if I take  itself is equal to  and hence  is inside  ok? So,

having found an element like this, we claim that  generates  ok.

So, for  this  all  that  you have to  do is  to  use division algorithm ok?   etc,  and

 etc are also there in  but nothing else is there, that is what you want to

show right?  So, given any   can be written uniquely as   is some integer plus or

minus, but  will be strictly less than .

If you start with  inside  is already inside . So,  is inside ,  which is  that

will be also inside . But  is less than , how can that be. So, the only way it can happen is

this  must be  is not in . So,  is  means , where  is in integer therefore, is

generated by  ok.



Now, without much effort, this same idea can be generalized to any  . Only thing is we

have to use now more linear algebra not just real numbers, but linear algebra we will have to

use ok. Not very deep, very elementary linear algebra only.
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So, let us see how. So, statement is: let  be a real vector space of dimension . Every non

trivial  discrete subgroup of   is isomorphic to   for some   ok, nontrivial  I have

assumed. So, . If  is , we have already proved it in the previous lemma. So, the

idea is to use induction ok, induction and some linear algebra.
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Let us assume this  , and the statement is true for all vector spaces of dimension less

than . Take the linear span  of  inside  is a subset of . So, you can take the linear

span that is some vector space, vector subspace of . 

Sorry, if  is not the whole of , a proper subspace, then in this subspace as dimension less

than  , then by induction we are through. So,   sitting there right, it is a discrete subset

inside  itself. So, it will be discrete in  also ok. So, you can apply the induction. 

So, without loss of generality we can assume that we are inside  equal to  that is the case.

What does that mean? That the set of vectors , they form a generating set for . 

Any generating set will admit a subset which is linearly independent and  maximal, a basis.

At least this is true very easily for a finite dimension vector spaces right. So, that is the only

linear algebra I am using just now ok? It follows that there is an  basis  contained inside 

ok for the space .  What is ?  is , it is the span of , alright?
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So, I could have made an elaborate statement in the in the theorem itself, but even this step

will be use useful to you. So, you should remember the proof here, rather than just the final

statement. Now, let us go ahead. Now, the idea is similar to the dimension 1 case. What you

do? Put   equal to infimum of   now, not just   ok. Where   runs over  . Once

again   is discrete so   is also discrete closed and all that. Therefore, this   will be

positive ok and will be attained.  

That is there is at least one element  belonging to , such that this  ok. You can

now replace one of the elements of   by   ok and assume that   is   union some other

finite set, which is a basis for . You can trade, how do you do that? Remember write this 

as something , one of the 's must be non-zero, say let us say .

Then instead of , you can put this  and keep other  as it is that will be also

basis. So, this is trading this thing is also part of linear algebra which is used to prove that any

two basis have same number of elements right. I am just recalling some linear algebra that is

all.



So, remember all elements of  are all in  itself. But now the first element is a special one,

viz.,  norm of  is minimal, there may be many elements with this property. I have taken one

of them and assuming that this is one of the basis elements. 

Now, I just split up the whole thing, write  equal to .  Put  equal to the linear

span of  and  equal to . So, I am taking a subspace which is  dimension lower

ok, and then I am taking  equal to .  is discrete inside  will be discrete inside

, ok.

So, what you have is  is written as some copy of  spanned by  direct sum with  and 

will be the infinite cyclic subgroup generated by this   inside  . So, that is the lemma 1,

direct sum with , this is a discrete group and this is the copy of , that is also discrete of

course.

So,  you  get  the  direct  sum  decomposition  like  this,  because  there  is  a  direct  sum

decomposition for the whole vector space. Also, one checks that  is a discrete subgroup of

, because its intersection of  with . So, by induction because the dimension has dropped

down here  must be isomorphic to some  for some .

Add this one more component , what does it give you?  is isomorphic to .  
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So, this is just a small beginning of the study of discrete subgroups, which is a vast subject.

You know there are books written on with title Discrete Subgroups of Lie Groups ok. 

Let us go ahead with the study of the subgroups. Take  to be a closed subgroup of  ok,

then the set of right cosets,  (similarly left cosets also you can take) is given the quotient

topology because they are the orbits of the action of  on  right?  acting on the left of . 

Cosets  are  what?  They  are  they  are  the  orbits  of  the  action.  Left  cosets  or  right  coset

depending upon which action you take, is given the quotient topology because it is a quotient

set ok? This is called a homogeneous space ok. 

What is  the meaning of  homogeneous space?  You start  with a topological  group,  take a

closed subgroup then look at  .  Assumption that   is  closed is  very  important  here

because  non  closed  subgroups  are extremely  badly  behaved.  You  can  always  take  

where  may not be closed, but you cannot do much topology on that one ok.

So, I am using this notation  for right cosets, I will read it as  by  only, but I do not

know how to read it otherwise. This is very popular in Lie group theory and so on. So, they

take left cosets, as well as right cosets both of them. That is why they have cooked up this

notation.
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Observe that  acts on the left of , then  acts on the right on . Therefore,  acts on the

right on the set of right cosets as well. This is the reason for the name homogeneous because

action is transitive. What is the meaning of transitive? Given any two cosets here that is an

element of  of  such that  of one will be other coset. 

So, one point is taken to the other point, any two points are related by the action or the orbit

space  of  this  by  this  action  will  be  just  one  single  element.  So,  that  is  the  meaning  of

transitivity  ok. Such actions  when you have such actions  on a space that  space is  called

homogeneous ok. that is the reason for homogeneity.
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So,  what  is  the,  what  is  the  good  point  of  homogeneous  spaces?  All  local  properties,

topological properties if they hold at one single point they will hold at all other points. Just

like  topological  groups  have  that  property,  the  homogeneous  spaces  will  also  have  that

property.

So, here is an example here, which we have just discussed already right. Consider the case

when  is non trial discrete subgroup of an -dimensional vector space over the reals. Just

now we have discussed it ok. 

In the proof of this that theorem as well as in the previous lemma, we have seen that the

discrete  subgroup   is  generated  by  linearly  independent  elements   where

, right. Extend this  -basis, extend this to an  basis  , add some more

elements to get a basis for the entire vector space , ok.
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Take  as standard basis for . Now what I am doing? I am going to map  to

 and so on  to  to get an isomorphism from  to  ok. Because they have the same

number  of  basis  elements  after  all.  Map   to   let  us  say  equal  to   to   to  get  an

isomorphism phi from   to  . This will have the property that if you take the subgroup

generated by 's that is .

So, they are they will generate , the direct sum of  with itself  times. Let us call 

will  be   automatically  because  they  will  be they  will  be mapped to  .  So,   will  be

generated  by   that  is  the assumption ok. So, here we are denoting the subgroup of  

generated by  to  by , so that is . Consequently, what you will get is  is a notation,

 isomorphic to  ok.

I am sorry forgot to tell you that suppose  , then only this will be true ok. Suppose

, then  will be the lower of  because that is the subgroup generated by all the

 because  . Then   is nothing but  , which is   ok,

 is  this  one,  but  how  do  you  get  this  one,  this  is  because  this  ;   is

isomorphic to the product .



 you know is isomorphic to   going to  giving you the isomorphism  to 

ok. So, you know all  this these are called tori,  you know each of them is called a torus

 is the standard torus in dimension . The same name is used in higher dimension also,

it is a tori. They are all what? Take any finite dimension vector space and take some largest

kind of discrete subgroup sitting inside that and take the quotient.

If you change the subgroup, the topology does not change, but a lot of geometry will change

here.  So,  that  is  why  they  are  very  very  interesting  objects.  So,  these  groups  are  very

interesting, even in the case of . For , they are called elliptic curves. 

Why? because each group here how it is sitting inside  will tell you a different story,

different complex analysis is there. Complex analytically the quotients will be different. So,

complex structure will be different. So, each of them is called, you know, an elliptic curve.
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In the general case, when  what happens?   will be  . We obtain this

the directly, all this way, we could have seen this one in the proof of our theorem itself. Up to

m you  have  basis,  you  have  extended  it,  extended  part  is  .  So,  here  it  is  already

quotient.   is  ,  where   is corresponds to the linear span of the first   elements



 ok.  So,  this  is  a  general  picture.  So I  have told you the complete  general

picture of any discrete subgroup of a finite dimensional vector space ok. 
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Now, here are some exercise which you can do easily. Arbitrary product of topological group

is a topological groups alright.
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Then some more exercise are there which are not all that easy, but if you keep solving them

one by one then it is ok. In fact, this one, the third one here, we have seen it in a different

context though this will not be difficult for you at all ok. 
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And then comes the connectivity reults. here you may have to spend a little more time, but

you know, again try to solve them in that order, solve slowly then you will get all. You can

solve all of them, that is the whole idea ok.
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And then you can apply them to various different cases also.
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Namely, you can apply them to study these classical groups   and so on.

So, there are some nice things happening her. So, I have tried to motivate these examples you



know, by giving those elementary exercises so that you can solve these things easily. So,

finally, these examples are the motivational  examples for those exercises ok.
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So,  best  of  luck,  you  can  try  to  do  this  one.  Next  time  we  will  continue  the  study  of

topological vector spaces now ok. That will be the last topic for this course.

Thank you.


