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Welcome to module 57 of Point Set Topology Part 1 course. We will continue our study of

topological groups today which we have started last time right. So, here are some notation

which I am going to fix up at least for today maybe tomorrow for next time also. So, these

notations will be for this section.

Take any topological group or just a group to begin with, for any group, you can have this

notation   and   are subsets ok,   followed by  ,   you can writeis is equal to all  ,

where  and  ok. Similarly,  or  etc are defined, alright.

I want to draw your attention. This is not a subgroup generated by something and so on. It is

inside the group, but these are just sets and this is just   ok, but you have to combine

them with the group law. Here, you have to take the inverse and take the corresponding set.



So,  the  following  easily  proved  fundamental  results  are  at  the  heart  of  various  special

topological properties of topological groups that we are going to obtain ok?

So, I will not keep saying that  is a group  is a group and so on. So, this  will be

always denote a topological group for some time. 
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The first thing is this lemma. It says for each , look at the left multiplication map given

by  ,  namely   So,  it  is  a  map from   to  .  Similarly,  I  can  take  the right

multiplication , ok.

So, one is multiplying on the left, the other multiplying on the right ok. So, both are maps

from  to . They are self-homeomorphisms of ok? It is very clear that they are invertible,

the inverse of  being equal to . Multiply by ;  into  is identity. So, it will be .

So,  these  are  bijective  function,  you know   and  .  Why they  are  homeomorphisms?

Because they are also continuous ok. 

Multiplication by , you are freezing the element , only  is variable. So, if it is like a two

variable function you are taking and one variable is fixed. So, that is also continuous ok?

since  and  both are continuous both of them are homeomorphisms.



Similarly,  and . So, an easy consequence of this is that you take any open subset and

 be any arbitrary subset of , then , What is ?  consists of , collect all of them

together. So, that is  and it is an open set.

Similarly,  now multiplying on the other side. Or you can take  or you can take

many other combinations. Go on multiplying just like writing alphabets. One of them is open,

that is necessary, then all these product subsets will be open. 

Can you see why this is true? Look at  that is an open set. When you multiply on the right

by , what is that? It is just  is a homeomorphism.

So,  one single  here ok, namely  that is an open set because it is the image of ,

under . Now  is nothing but union of all these things where  varies over . Therefore,

this  is open. similarly . So, once this is open you can apply this, you know to 

times  is some other set right and so on. 

You can go on applying to finitely many products all  the time. So, they will  all be open

subsets. I am repeatedly using that 's and 's which are homeomorphisms ok. So, this is

the fantastic thing happening here inside a topological group. 

(Refer Slide Time: 05:51)



The second thing is that inversion  which I have denoted by  that   equal to ,

this is also a self-homeomorphism of  and if you take this again, that is  namely  that is

the identity map, because inverse of  is  itself ok. Since  continuous, that we have seen

already,   is  identity.  This  is  a  homeomorphism.  inverse  of   is   itself.  So,  it  is  a

homeomorphisms ok. It is a very special homeomorphism it is of order 2.

Next here is an easy thing which you will keep using without even mentioning it. So, here I

have mentioned it for the first time maybe you know it will be used several times namely,

take any 3 subsets ok. Suppose  is empty iff  is empty. This is very easy

to verify. Take a point here which mean which will look like , but it is an element of . So,

we have  right? But then  So, there is an element a here and the same element

is here .

So, the RHS is nonempty. and conversely ok? 

A group homomorphism  from  to , ok. What is a group homomorphism?  is equal

to   for  all  ,  right.  A  group  homomorphism  of  a  topological  group  is

continuous if and only if it is continuous at a single point, namely   belonging to  . Any

other point will also do, but let us prove it for  belonging to , ok
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So, you must have learnt it elsewhere, but let me sum it up here, because of the importance of

this little result here ok? We need to prove only the `if' part here because the `only if' part is

obvious.  If   is continuous, it will continuous at   also. Just continuity at a single point

makes it continuous everywhere that is the part which you have to show ok.

So, let  be continuous at  and  be any other element some other element. Let us look at the

image of  that  namely  .  Since   is  a  homomorphism for  every  ,  we have

 is equal to  Therefore  is equal to . This is true for all

. 

So, what I  have done? I multiplied by   on the left inside the bracket.  So, outside the

bracket it will be  because of the  is a homomorphism. So, I have to compensate it.

So, I am multiplying again by  . So, it cancels out alright, but now what is this inside

thing, it is a left multiplication by , right.

And  is a point of . So, it is a left multiplication by  inside . So, this whole thing

will look like  operating upon h. Therefore,   itself is equal to 

ok. So, I have written  itself like this in a complicated way.

But, this will help us now why because I know  is continuous,  is continuous to show

that  is continuous at a point I have to only show that  is continuous at some other point.

What is that? That is precisely what is happening here see, I want to show this map   is

continuous at  ok.

So, I apply  to this; this  comes to , now I apply , but  is continuous at . So, I can go

all the way up till here when I come to  of that, it is  and  will take it to  that is nothing

but   ok. So, middle thing is  continuous at  ,  these two are continuous functions,  the

composite is continuous and starting point here is .

So,  is continuous at  ok. There are many different ways of writing it down. So, I find it the

elegant way of writing that is all. So, if you learn this kind of writing down it will make other

concepts very clear. At elsewhere also.
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Now, I introduce a terminology here because this inversion keeps coming again and again

right. You take a subset  contained inside  and call it symmetric if  equal to ; that is

if you take the , the inversion. Under inversion, it is invariant ok. So, such a subset

is called symmetric. Now this is a temporary notation this has been used by others. So, I am

also using this terminology.

Now, here is a lemma for symmetric things. Let  be a neighbourhood of the identity element

in , ok. Then the following is true. There exist symmetric open subsets  of  such that the

point   is in  and such that  is contained . So, starting with any neighbourhood , you

can improve it to become a symmetric neighbourhood ok.

There are many ways of doing it. So, there are many of them. In fact, if this happens to nbd,

this just means that there is a symmetric neighbourhood systems. So, this means just that

instead  of  all  neighbourhoods  you  can  just  take  symmetric  neighbourhoods  to  form  a

fundamental system at the origin.

So, that is the profoundest thing here ok. Similarly, even more profound is that there exist

symmetric open sets  of  containing the point  and such that  is a subset of  that is



obvious anyway ok, but   itself is contained inside  . Now, see   is symmetric. I can

replace  by  at my will.

So,  this  will  imply  a  lot  many  things.  That  is  what  I  told  you.  These  are  elementary

observations to build up the topological theory. So, you have to come back here if you have

made a mistakes or you have not understood these things correctly. Then you will have no

problems you will see that ok. 

So, starting with any neighbourhood of identity I can get such beautiful neighbourhoods;

neighbourhoods which are symmetric, neighbourhoods which are contained inside their own

product and the product is contained inside  and so on ok.
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So, how to prove that? Proof is also very elegant in a sense. Here I am actually proving even

stronger thing here namely, instead of single point you can do it for any neighbourhood. Let

 contained  inside   be  an  open  subset  of   ok.  See  I  started  with  an  arbitrary

neighbourhood only now I am taking  to be open subset. A neighbourhood means after all

there is an open subset right. So,  belongs to ,  is open  and  contained inside , let us

start that way. Since the inversion is a homeomorphism, it follows that  is also open ok?



because it is  . Take  is open  is open, intersection is open. Inverse

image of  is  itself.

So,  is in both of them, so that  is a neighbourhood of  open neighbourhood of  ok. What

is ? It will be  it is same thing as . So,  is a symmetric open set containing 

and  is contained inside  ok because  is  and  is also contained inside  ok.

So, that is  what I  am writing here namely   belong to   and   are open

subsets ok. This  will be equal to  that will be contained inside . So, this is

by continuity of this map which I have denoted by nu earlier. Apply (a) to get a symmetric

neighbourhood  of  such that this  is contained inside the intersection of  and .

 and  are neighbourhoods of  . So, intersection is also neighbourhood of  . So, now, I

can improve it to become symmetric also. So,  is extra hypothesis I can put ok. So,

once you have that  is always contained inside  because identity is there right.

So,  that is contained  so, but I can replace this  by . So, this will be 

also because , but now this  is contained inside  and it is also contained inside

. So, first one is  and second one is  I have written that is all. And that is contained

inside  ok.

So, proof is over. So, we will have opportunity to use this one, no problem let us see. 
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Now, a little about closures and so on. Let  and  be any subsets of  again ok. Let this 

be the set of all neighbourhoods of . Let  be the set of all symmetric neighbourhoods

of , this is a smaller family ok.

They are all neighbourhoods of  . and these are only symmetric neighbourhoods. Then the

claim is:  an arbitrary subset, I am making a statement about .  is intersection of all 

where  ranges over all symmetric neighbourhoods of . It is also equal to the intersection of

all   where   ranges  over  all  the neighbourhoods of   and then the other way round;

instead of , I have  here and  here the other two things are similar here. So, either I

can write it on the left side or write it on the right side. So, I take intersection of all of them

and what I get is , ok. The second thing is much easier  into  is contained inside . It is

a neat statement ok. Let us see how this proofs work.
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Let  us  first  prove  the  first  one.  What  is  the  first  one?   equal  to  intersection  of  

belonging to . So, where  is only symmetric ok. What is the meaning of ? Take a point in

, means every neighbourhood of that point intersects  that is the definition of closure point

right.

We  shall  use  that  directly  the  definition  of  closure  no  other  properties  directly  use  the

definition ok. Suppose  is not in , then I want to show that it is not in one of the sets here

and therefore, it is cannot be in intersection. So, not in  means not on the right hand side and

again not here means not here that is what I want to show ok.

So,  suppose   is  not  in   then  there  is  a   inside  ,  What  is  curly  ?  Memebrs  are

neighbourhoods of identity element such that  is empty. So, what is ?  will be

a neighbourhood of  is not here. Every neighbourhood of  will look like  where  is a

neighbourhood of identity; this is what I am using here.

You see neighbourhoods of any other point you do not have to look anywhere you have to

just translate them left translation or right translation does not matter. Starting with identity

element and a neighbourhood multiply by  on the right or  on the right that will contain 

and it will be neighbourhood because these are homeomorphisms multiplication on the right

or left right.



That is what I am using here,   is any neighbourhood of . So, there is no specialty here.

And one of them intersection  is empty because  is not in  that is all I have done. Now, by

part (a) of the previous lemma, we can assume that   is symmetric. You can go back to a

symmetric neighbourhood it will be smaller thing contained inside .

So, that intersection with   will be still empty. So, I can assume   itself is symmetric ok.

Now,  it  follows that   is  not  in  ,  see  I  have   intersection   is  empty implies  

intersection  is empty that is what I am using here ok. So, if this is empty  cannot be in

. Now, this is symmetric therefore, it is one of the elements here one of the members here

so; that means, that  cannot be in the intersection ok.

So, one part we have done. Now, start with the point which is not here then you can show that

it is not in the closure this is what I have to write. Conversely, suppose  does not belong to

RHS; that means, that is a symmetric neighbourhood now directly because I have put  here.

Say let us call denote it by  ok such that  is not in , see  is symmetric neighbourhood

and I am taking  times that, right.

So,  is not in . So, that is the meaning of this; this is not in the intersection. But that just

means that again going back here  is empty.  is a neighbourhood of , this means

 is not in the closure. So, part (a) is done.(Refer Slide Time: 24:17)



The next one what we have to do?  is contained inside , ok. So, let us see why, the

first thing is we know in a product topology if you have a subset   and a subset   of two

spaces   and  , then   is same thing as   right; that is what I am using here

 is equal to  ok. Now, all that I have to use is the continuity of the multiplication

that is all. The  from  to ,  going to .

So, how? Let us see   is obviously contained inside   because   is

nothing, but   ok. If you take inverse   will be contained in  , alright. But

 is a smaller subset than . So, this is contained in . But this is a closed subset.

Why it is closed subset? It is bar of something, then I am taking  is continuous. So, 

of this one is a closed subset containing a set. So, its closure will be contained inside that

closed subset, since the closure is the smallest closed set containing the set right. So, I am

using something which we have done a long long back perhaps.

But,  is . So,  is  that is contained inside  because this is a

closed subset contained in  ok.  Now, apply mu on both side this will be  and that is

contained inside .

So, do not make the mistake that   is contained inside  , ok. First thing you should

observe is that   is closed,   is closed, but   may not be closed ok. So, these are the

cautions.
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Now, we are  going to  do something quite  deep suddenly ok. We have everything every

machinery  ready  for  it.  So,  start  with  a  compact  subset  and   be  a  closed  subset  of  a

topological group  ok, no other assumptions  is compact and  is closed ok. Suppose they

are disjoint. Then they can be separated by open sets that is just, but we can do better, namely

there exist one single open neighbourhood  of  such that  that would be neighbourhood

of K that we know right  is empty.

 is  a  neighbourhood  of   will  be  a  neighbourhood  of   because   is  a

neighbourhood of identity, but these are quite large open subsets for that matter, but they

contain  and  the intersection is empty. So, such a neighbourhood of identity I can find.

So, this is the claim. In particular it will follow that  and  can be separated by open sets.

It is similar to normality, but far away from normality because I have assumed  is compact

not a closed set ok; not just a closed set. If it is closed set then this would have given you

normality. So, quite near normality it comes ok. So, that is why I am taking here suddenly

proving this such strong results.

So, now do you understand that in topological groups the topology on a topological group has

to be quite special alright though it can range from discrete to indiscrete, though not anything

in between,  it has to be special ok.
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Let us prove this one. If  is empty there is nothing to prove because I can always take, you

know,  when  is empty is just empty set. Empty set intersection anything is empty that

is no problem. So, let us assume that   is nonempty. Similarly, we can assume that   is

nonempty alright. Since I start with  belonging to  that is why I am justifying that let  be

non empty that is all. 

Take  a  point   inside   put   equal  to  ,  the   is  closed.  So,   is  open

translated by  that is also open.

See look at this one  is a point of point of  ok and hence  in in . So, I am I taking

 of this one. So, that is an open set that is all that I have ok. Now, from lemma 5.13

whatever we get a symmetric neighbourhood  of  such that  is contained inside . See

why this is true? Because   is a neighbourhood of identity, why? Because   is inside  

therefore,  is inside .

Because  is not in  and  are disjoint that is all ok. If  is here  of that will contain

identity element. So, this  is open and it is a neighbourhood of identity you can improve it

to get a symmetric neighbourhood  such that  is inside . So, this was part (a) and (b)

both combined here of this lemma which we have proved just now.



This implies that  is empty this contained inside  and  right. So, this , I

am bringing it  on the left here.  So, what  I  have what is   on that side ok. So, it  is

contained inside , but intersection with  is empty there ok.

So, for each  we have found  such that  is empty. So, this already tells you

that  is regular. The topology is regular why? bBecause suppose instead of  compact and

so on  is singleton , ok. Then if I prove whatever the statement that would be regularity

That  is  all  that  is  all  I  have  proved   is  a  neighbourhood  contained  inside  the

complement of .

So, here itself the proof is  over  of  regularity  ok. So, we have already  proved that  every

topological group is regular on the way to proving this lemma ok.

Let  us  continue.  Now,  applying  the  lemma  5.13  again  we  get  another  symmetric

neighbourhood which I have denote by  of  such that this  is contained inside  ok.

Because  is a neighbourhood of identity alright.
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If you combine this one   is empty, now I can replace   by   which is a

smaller neighbourhood than . So,  is empty ok. So, do not go on doing

this again and again. We have already arrived at what we wanted.  

 is  a  neighbourhood  of  e  right.  So,  U  x  is  contained  inside  .  Therefore,

 is empty. Since  is symmetric, one  on this side I am translating it to

the other side ok. When you translate you have to write  , but you do not have to write

 because  is symmetric.

Out of the three you can translate to the one other side and out of three you can combine two

of them and that just makes it one of them  is contained inside . So,  is

empty ok. 

We have not yet completed. So, one single thing we have done this much from regularity. We

have improved it to this much ok the same neighbourhood here repeated twice comes on

both sides. 
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To prove regularity as I have indicated,  just the   is empty that was enough ok.

Now, we use the fact that   is compact. So, if   is compact there will be finitely many



 belonging to  such that  is contained inside union of  going to  to 

ok? Why? Because these 's as  varies over  will form an open cover for . So, out of

that you extract a finite sub cover.

Now, you put   equal to intersection of  's. Because this is finite intersection it is open.

Because each  is symmetric, symmetric means what  is , ok. So, intersection is

also. It follows that  is symmetric neighbourhood of , open neighbourhood of . Moreover

we have  is contained inside union of , I am replacing  by this union times .

Then I push this  inside the bracket. So, it is a union of  ok, but then each  is

what?  is the intersection of all these right. So, it is contained inside each , I can replace

 by  depending upon what this  is, so that I can this as ; I am writing ok.

So,  is contained inside this finite union therefore, if I take the intersection of  with

 I want to show that this is empty right that was my final goal.  Look at , this

 is contained inside this one large thing ok. So, you take this thing intersect with  

push it inside the bracket that is all, ok? So, it is the union of all these intersections finitely

many of them, but that is contained inside union of  as it is.

But,  what is  is intersection of these things is contained inside . These are larger

open sets ok. But, now what are these things each of them is empty by the choice. Remember

that each of them is empty. I have taken only a finite many 's, coming from  ok. So, each

of them is empty. So, union is empty. 

So, we have proved that a topological group is strongly regular in the sense that a compact

and  a  disjoint  closed  set  can  be  separated  by  open  sets  in  a  neat  way  by  one  single

neighbourhood  of  and its translates,  is empty ok?
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So, I am just summing it up for posterity: every topological group is regular that much is fine

alright. 

(Refer Slide Time: 38:54)



(Refer Slide Time: 39:00)

So, here are some elementary exercises again we can work out them, but these are serious

examples serious exercises. If you work them in that order you will be able to do all of them.

So, they are built up in that fashion ok.
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And then there are some other very nice things happening. I have no time to discuss them

fully, but we will discuss them provided you show equal interest and come up with some

solution, maybe wrong maybe right whatever it is. So, these are left to you as exercises and

maybe specifically mentioned assignments ok.
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So, let us stop here. Next time we will continue the study of topological groups.

Thank you.


