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Welcome to the last chapter on Point Set Topology course Part 1. So, this will be topological

groups and topological vector spaces.  The interaction of algebraic  operations  of addition,

scalar  multiplication etc  with the Euclidean  topology on the one hand and the important

example that we had Banach spaces right, they are very important ok. What is the Banach,

one particular Banach space we have emphasized namely, the set of all bounded functions on

a given set right.

So, all these things together motivate the study of the so called topological groups on the one

hand and topological vector spaces on the other ok. So, this last chapter is devoted to a brief

introduction to these two concepts. The first section is just a brief introduction to topological

groups and the next section we will have take up topological vector spaces ok. It is notat all

claimed that this is exhaustive or comprehensive. tThis is just a brief introduction ok?
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Let me start with recalling the definition of what is a group first,  so that I can use those

notations comfortably. I assume that you will know already groups because you have even

studied group actions right? So, a little bit of group theory whatever groups, homomorphisms

of group etc I suppose you know, but let me recall them first for ready reference also.
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First of all,  you may treat  a group order triple of a set   and a binary operation   and a

distinguished element ; where  is a set,  is a function from  to  that is the meaning

of a binary operation, which is associative. A short notation we will use:  as .

So,  and  are elements of ,  is also inside . You may read it as . 

Axiom of identity: there is this axiom which means just another condition here, that is, this

distinguished element is called identity.Why? Because its action on other elements,  is 

and on the right side of the  is also  for every  in  ok? So, it is acting identically on

other elements. That is why the name identity element. 
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The third axiom is that for every  in , there exist a unique element  ok? We read it as 

inverse such that, what is the property?  is equal to  is the identity element ok?

For every  in , the element  is called actually inverse of g. 

We will also use the short expression:  is a group just like we say  is a topological space.

So, we can mention  is a group instead of writing the triple   etc each time. Often

even the simple notation this composite instead of  we are writing , but most often

when there are no other compositions we will just write it as . 



If there are 2, 3 dfferent compositions, then you have distinguish them you cannot write all of

as  ok. Even when there are 2 different groups  ok, say one is the domain and another

co-domain of a function, we are using the same  here and  there to mean represent the

two corresponding multiplications inside  and  respectively. 

So, such short notation you know; you know short notations or abuse of notation which is

there in practice by stalwarts all the way go back to, you know Euler and so on, we cannot

change that. So, we better follow those rules. 
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In a group , if the composition happens to have this property namely  is equal to 

for all  and , then  is called an abelian group or a commutative group ok. 

This is similar to the case of integers, rational numbers, real numbers and so on. So, there

standard notation is plus:  stands for , but that is not forced on us. Because, there

may be more than one composition both of  them commutative ok. So, then you have to

choose plus for one but for the second, you may choose  or some such thing. 

So, that is also not  customary, though you have to follow the customs here rather than rigid

rules; rigid rules will be followed you know logically in our mind that much we have to do--



abuse  or  no  abuse.  This  abuse  of  notations  it  just  means  that  you  are  not  going  to  get

confused by this simplied notation. That is a whole idea ok.
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Let  be a group together with a topology on the underlying set  such that the product map

namely,   going to  ,  that  I  am going to  denote  by  ,  for  a  while  that  must  be

continuous ok. 

What is the continuity here  is a topological group which means it has a topology ok? Also

it is a multiplication. Then condition is that this multiplication is continuous. Means what? 

has a topology, I have to take the product topology on  . The product topology from

given topology on both factors the same topology. That is what I have to take. Under that this

 must be continuous ok? 

We then call  a topological group. A subgroup  of  together with the subspace topology

will  be  called  a  topological  subgroup provided  what?  What  you  have  to  do?  The group

operation is also should be taken as the restricted operation from that of   because it is a

subgroup ok.



So however, when the context is clear we may simply mention this as a subgroup. Likewise

homomorphisms from   to   between topological  groups ok are  always assumed to  be

continuous unless mentioned otherwise ok.

(Refer Slide Time: 08:54)

Pre-composing the continuous function  from  to  by  going to . See  going

to   is a continuous function from   to   right. It is like a coordinate inclusion;

follow it by  going to  is continuous. So, this  becomes .

So, this composition is just  going to . So, that map I am denoting by . It is

called the inversion map  is  because  is uniquely defined ok. This map is called

what inversion map and it is continuous by this observation. I am not making this as an extra

hypothesis, extra condition.

It is a consequence because it is a composite of these two functions.
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Likewise, if you take  going . The original composition . So,  going to 

is  what?  Identity  comma   right,  therefore  this  is  continuous.  Now  compose  this  with

 going to . That will become  going to . The  is equal to 

, right? Because inverse of the inverse is identity. Therefore, actually the multiplication map

 you started with is also continuous.



So, in one single go by taking this definition namely  going to  is continuous,  we

have  made both  operations  of  taking inverse  of  an element  and taking   one  to  ,

continuous ok. Once you have both of them continuous you can recover the continuity of 

also by the formula  is equal to .  

So,  they are  two different  conditions  combined equivalent  to  each  other.  So,  32 and  33

together imply continuity of . alright.
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So, here are some examples now, any group together with the discrete topology or indiscrete

topology. Instead of a topological group, see start with any group. So, group operation you do

not have to change. You put a topology, we are very familiar with putting lots of different

topologies  on  a  given  set.  You  put  the  topology,  say.  Discrete  topology  cross  discrete

topology is discrete the codomain is discrete, but any function from a discrete topology to any

other space is always continuous. 

Similarly, indiscrete to indiscrete any function into an indiscrete space is also continuous. So,

out of this the first one, the discrete topology is not so disinteresting. We have already done

one of them, in the context of discrete action of a group on set or on topological space. 



But the second one, namely indiscrete topology is most disinteresting one. You will never

have an occasion to use that one ok? But what is happening is that, you know, it triggers

some thought process here. These two extremities are there right? on any given group. They

are both topological groups without change in the group structure. So, you may think that

topological  groups after  all  have no special  properties  at  all!  Any group is  a  topological

group. That is of course true. 

However, can you conclude that the topology for a topological group may not have no extra

properties at  all? If  it  all  there are additional  properties  it  must  be because of  the group

theory? You may see if you wait a minute that this is not the case. So, we are going to prove

something out of this maybe you may think it is nothing ok. In other words, starting with an

arbitrary topological space, you may be able to put group structure so as to get a topological

group. So, we will see such things. 

So, that being the abstract part, let us come back to some reality, namely, some genuine and

useful examples. The real numbers, complex number. These were the motivating examples

for us, for this abstract definition right, along with standard addition. And you take non-zero

(real  or)  complex numbers,  there is  a  multiplication also,  they are all  topological  groups

right?

The  complex(or  real)  numbers  of  unit  length,  form a  closed  subgroup  of  the  respective

multiplicative topological groups complex or real numbers ok. If you take real numbers of

unit length, it is just minus one plus one that is a subgroup. Similarly, the circle, the unit

circle is a subgroup of the non-zero complex numbers under multiplication ok? 
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So,  these  are  the  easy  examples.  Any  finite  dimensional  vector  space  over   is  also  a

topological group. I am only looking at the addition. The scalar multiplication is there, we

will study them little later. Similarly, our example namely I told you about Banach spaces--

the set of all bounded functions on  taking values in  or  ok? That is a Banach algebra

right? So,  there  the addition,  which will  be automatically  continuous with  respect  to  the

topology induced by the norm, the norm is supremum norm ok.
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One of the most interesting case of all these topological groups occurs inside the space of all

 matrices.  Addition  there  already  makes  it  a  topological  group  ok.  Even  the

multiplication for , just like the in the case of complex numbers and real numbers of

course, you have to throw away the  matrix of course, not only  matrix this time you have

to throw away a lot more namely all matrices of determinant equal to , you have to throw

away.

So, in other words you have to take only invertible  matrices. Invertibility with respect

to multiplication. So, that will form a group. The group laws are continuous. how do you take

inverse of an invertible   matrix. Each entry will be a polynomial namely the  

cofactor divided by the determinant. So, this is polynomial divided by a polynomial, but the

denominator is non zero therefore, they are continuous ok.

So,   forms a group and the group laws are continuous with respect to what, with

respect to the Euclidean topology.   is an open subset of the space of all matrices

. I have told you earlier, rather than writing , you write , which suggests that

we are dealing with matrices as vectors. So, that way you get a Euclidean topology on the

matrices. 

Similarly,  you  can  look  at  the  orthogonal  group,  ,  which  is  defined  as  all  those  real

matrices   such  that  .  If  you  take  complex  matrices  then  take   namely

conjugate transpose right?   equal to identity. That will be called the unitary group. So,

verification that they are groups is easier, is just linear algebra, matrix theory. 

The only missing thing is why the group multiplications are continuous. you can separately

verify that  going to  is continuous by looking at the matrix entries of this product.

They are all polynomials. Then you have to look the function  goes to , whenever  is

invertible. Of course, you have to know how to write the inverse. 

So, for writing the inverse you have the Cramer's rule which says: take the adjoint matrix.

which has again each entry a polynomial in the original entries. Then each entry you have to

divide by the determinant of the given given matrix which is another polynomial. So, that is

the whole idea of this  ok and  in general. They have various subgroups I



have introduced only two of them here.   and  here then you can take groups with the

determinant one also here. They will also form subgroups smaller subgroup and so on. 

So, these  groups and many of their groups are  central to a lot of mathematics and there are

theories here a small aspect of this you can call them  matrix groups which will lead   later on

a deep theory, very beautiful theory call  Lie groups which we will not be able to do in this

course.
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So, let us stop here and take up these discussions next time ok.

Thank you.


