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Welcome to module 55 of Point Set Topology Part I. So, today we shall study the separation

axioms, Frechetness Hausdorffness regularity etc comparing one with the other. So, that is

why the word Hierarchy here which one is stronger than which; so, that is the main question

here ok. For example: you have already seen that Hausdorffness implies Frechetness. On the

other  hand,  we  cannot  compare  directly  regularity  or  normality  ok.  Similarly,  we  can't

compare Hausdorffness and regularity ok.

However, if you mix up these two ok, then something quite surprising thing comes out. There

is a complete hierarchy you can make. So, once there is such a hierarchy, we will have to use

numbers to indicate them. I mean classically they have been done like that; so, we have to

follow it, there is no other choice ok. 



I want to warn you that there are some authors who do the other way round which is totally

unexplainable, I do not know how they have got into that mess; even very good book like

Simon's book has a different definitions altogether.

So, my connotation is different from that. So, you have to be a bit careful about that. So, I

would prefer the terminology I am following, which is more logical than the other one. So, I

just want to warn you that is all. So, we shall call a Frechet space a  space and a Hausdorff

space a  space ok. 
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A space which is  and regular will be called  space and a space which is  and normal

will be called  space. So, this is what I meant by mixing up,  and regular will have the

name, namely . And,  and normal will have the name ,  and completely normal will

be called . 

Now, why these numbers these numbers have been chosen with some results already in mind

namely a , where  will always implies . So,  implies  implies  implies 

implies . So, that is the hierarchy. That looks like a beautiful way of putting it and easy to

remember thing also ok. So, that is the theorem, the first theorem here ok. 
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So, I will come back to these two things a little later.
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So, I will come back to that one. So, first let me go through this theorem.
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So, first let me go through this theorem. , we have  implies  ok. So,  implies  is

obvious,  being completely normal plus  is normal plus  ok. So, completely normal

implies already normal so, that is obvious. 



Next, though normality itself does not imply regularity, if you put  on both sides, there is an

implication. Why? because as soon as  is there ok, singleton sets become closed. 

Therefore, if you have a point and a closed set disjoint from that, its as if we are having two

disjoint closed subsets. Therefore, once you put normality also, there are open subsets around

them which are disjoint. So, ness assures that singleton points are closed, that is why this

works alright.  

Now,  implies another one, I will come to that one later on. First let us complete this. 

So, now,  similarly implies  why? Because,   is to a closed set and a single point, but

single point is closed and when you take two distinct points, they are both closed subsets. So,

we  can  apply  regularity  to  get  two  open  subsets  around  that  one;  so,  that  imply

Hausdorffness.

So, ness helps to derive Hausdorffness from regularity. Only under , otherwise it is not

true.

And, already we have seen that  implies , ok. 

Now, I go back to these other numbers here. so,  So, we are introducing little more few more

numbers here, let me come back here. 

A   space  which is  completely  regular,  remember  there  was a  regularity  and  complete

regularity also we have introduced ok. So,  space which is completely regular will be called

as . 

Unfortunately, there is no integer between 4 and 3. So, we have to use three and half Ok? The

whole idea here is that  implies  and  automatically implies . Because, complete

regularity implies regularity, add  on both sides you get  implies . But,  it true is that

 implies  because of Urysohn's characterization. Remember that  under this complete

regularity was actually an adopted version of Urysohn's characterization right. 



So, that is the whole idea. So, this  has another name: it is called Tychonoff space ok. So,

there was no integer to accommodate it. So, people cooked up this  name for it that is all. 

But, there is another thing one can do, a weaker version of  ok. So, let us define that one,

we have not done that one yet. So, there is no regularity, normality anything, it is weaker than

 space. What is it? A topological space is called  space, (so, this time we are jumping not

 and so on)  space, if for every pair  of points in  ok, when I say a pair I meant 

and  are distinct, there exist an open set  containing  and not containing  or an open set

containing  and not containing . I repeat: given two distinct points, you know you may have

an open set around the first one not containing the second one or it may happen that there is

an open set containing the second one, but not the first one. 

It just means that both of them can also occur, I am not saying `either... or...' ok. I am not

saying only this or only that, No. The point is both of them can also occur. I do not have to

tell that, but I want to make that one clear ok. In the definition above, we have not used the

words `either.... or...'. So, it may happen that both are true as in the case of ness, in the case

of ness if you have two distinct points, there is a neighbourhood about one which does not

contain the other.

Now, I do not say which one ok; therefore, it is applicable to both the points there right? So,

that is why a ness automatically implies , but  may not imply  ok. So, this  space

its  just  looks  like  a  cooked-up  notion.  That  is  my  opinion,  cooked-up  notion  from

Frechetness.  There  is  only  one  instance  wherein  with  some  extra  hypothesis  there,   

necessarily imply ness, we will see that one ok. There is only one instance of that one. 

So, anyway, the numbering is completely justified because of our theorem now,  implies 

implies  implies  implies  implies  implies  ok. So, this is a complete hierarchy

alright, whenever  gives  implies , ok.
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So, here is another example now which is a Hausdorff space, but not a regular space ok. See

Hausdorffness does not imply regularity, regularity does not imply Hausdorffness either, but

regularity plus  implies Hausdorffness ok; Hausdorffness same thing as . So, here is an

example which is Hausdorffness but not regular. 

Again on the real line, we take the collection tau of all subsets  which satisfy the following

condition. 

Given  belonging to , there exists an open interval  such that  is inside , but instead of

saying that   is contained inside  which will be the usual topology, what we say  is

contained inside , a much weaker condition ok. If the whole of  is contained inside  well

and good, that will be usual topology, but this is much weaker condition ok. 

Nevertheless,  this condition defines a topology on  , with this topology   will be called

rationally  extended  topology  ok;  that  is  the  name.  Obviously,  it  is  finer  than  the  usual

topology, because usual topology also satisfy this condition right. The whole of   will be

contained inside .
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Once it is finer than the usual topology, it is Hausdorff, anything finer than Hausdorff space

is Hausdorff. So, half part is over. So, what we want to prove is that it is not  regular ok. For

seeing that it is not regular, we take   equal to   set of all irrational numbers, the set of

rational numbers is an open subset here right. Because, take a point in the rational numbers,

take any interval all the rational points in the interval are contained inside  that is all. So, 

itself is open therefore,  is a closed set ok.

Now, take x equal to 0 or any rational number for that matter, let us take  equal to  that is

outside  right? So, we must find, what we must find?  and  such that  belongs to  and

 is contained inside , and  is empty, that is regularity. But, now we have to show

that  no matter what   and   are,  the moment they are open and contain   and  , their

intersection is non-empty. That is what I have to show, so as conclude that the space is not

regular.  We could have chosen any other point, any other closed set, but this is our choice;

so,  is . So, we will try to do this one. If it fails it does not mean that it is regular because,

we have made a choice which may be wrong ok.
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So, assume that  is an open subset containing  and  is an open set containing all the

irrational number that is what we have started. So, since  is an open subset, there will be an

open interval   such that this   is inside , remember   is just  , or any rational number;  

belongs to  and  is contained inside  ok? So,  is an open interval therefore, you can

take any , which has to non empty. 

What is  ?   was set  of  all  irrational  numbers.  So,  it  has lot  of  irrational  numbers  ok;

obviously,  this   will  be  different  from   no problem. Then there must  be another  open

interval  such that  is inside ,  is inside , because  is an open subset containing ,

by our assumption ok. Look at these two intervals  and  ok, they have a common point , 

and  are open intervals. This is a common point essentially they are intersecting. 

So, intersection of two open intervals if it  is non-empty, it  is another interval  only right?

Therefore,   is  a  non-empty  open  interval,  but  then  this  non-empty  open  interval

intersection with  is also non-empty. Now, if you look at  that is inside , but if you

look at intersect  that is inside . Therefore, this intersection is both inside  and  so,

it is inside  



Now, that is the thing that we wanted to prove, that such open subsets cannot be disjoint. So,

that proves that the rational extended topology on  is Hausdorff, but not regular ok. Can it

be normal? 

Student: No.

Teacher: Why?

Student: Because, we have seen that  implies .

Teacher: The other way around !

Student: Yeah,  implies .

Normal plus   implies regular plus  . So,   implies  , but we have seen that it is not

regular, but it is Hausdorff; so, it is  ok. So, it follows that this cannot be normal. So, that is

a corollary, since you have proved that it is not regular ok. 
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Now, we will take another example which will give you regularity does not imply normality.

This space is regular, but not normal ok. We have already seen such an example, but we

would like to  do this  one  for  reason  that  this is  again another  modification   of  the  real

topology, Euclidean topology. So, in exercise 4.48, we have indicated that the semi interval

topology product with itself is completely regular, but not normal. 

See what we have proved is regular and not normal, but it is actually completely regular.

That is what we have indicated in the exercise, there it was an exercise ok. But now, we will

prove this one the other example,  which is regular, but not normal ok. So, what I do? I take

the upper half plane  or  belonging to , with  positive ok. The second coordinate is

positive, the upper half plane, open upper half plane, I am denoting , the real line 

equal to  ok.

I am including that also with  and that is my . So, this is the closed upper half plane, but I

do not want to call it so,  because, (this part I can call it as upper half plane), but here around

, I am going to change the topology. So, I am using a different notation  here. So, here is

the topology coming now, two families are declared, together making a subbase.

 is equal to set of all open balls ok, around points inside  namely  coordinate is positive

 coordinate anything; . It must be contained inside  therefore, the radius must be

less than   that is all,  . So, I am taking all the open balls completely contained

inside the upper half plane ok. These are standard open balls right. The second one is slightly

different, that is where the crux of the matter lies. 

They are open balls with   center, the radius is equal to  not some . So, -coordinate

becomes the radius of that ok. So, it is touching the  -axis right in one point. What is that

point? . So, now you include that also that point is not there in the open ball here, it is

tangential. So, include that point also that is the elements in this set such that  's are

inside , ok.

So, start with a point in the upper half plane, take the maximum open ball contained inside

that that is the meaning of this  ok. You cannot take bigger than that, then it will go

below the -axis, that is not allowed right. So, if you take maximum open ball this is what it



is, then put that point  also in that. So, this is going to be one of the sets inside this ,

take the collection of all of them; so, that is your . Now, you put the union of these two,

call that as   a sub base for a topology on . Any collection of subsets can be declared as

subbase that we know ok.

So, this is sub base for topology on . Whatever that topology is it has the property that, by

the way I have made a wrong remark here, namely this is actually a base. Let us not bother

about this, this is subbase is enough for us. Note that this topology is finer than the Euclidean

topology, because you see on the on the upper half part this is actually Euclidian topology ok.

Everything open in the  is there and vice versa. 

And On the axis you intersect these balls with the axis, what is it? It is just the single

point  therefore, each singleton point on the axis becomes an open set. Therefore, the

induced topology on the  axis  is  discrete,  in any case its  finer  than the usual topology

alright. Therefore, this entire topology is finer than the usual topology ok, in particular it is

Hausdorff. So, Hausdorffness is already there. Alright.
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Now, we have to show that this is not what this is not normal. So, I observe this namely if

you take   union  ok, that is an open subset of this topology. It is in the 



part, its closure is all those   belong to   such that  ; the full

closed ball will come, when  ranges over or  ok. 

So, the closure will be just the closed ball that is all.   is already there, but the closure

will contain all the rest of the circle also that is all. 
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Regularity at points of  follows easily by the Euclideaness of the upper half plane. Take a

point in the upper half plane, take an open subset, you do not have to worry about any weird

open subset, but you can take one inside that you can take a usuual open ball right and verify

the regularity,  its already Euclidean space; so, it is regular. So, there there is no problem

there. The problem arises when you take , namely on the -axis ok.

For  and  is an open set containing it ok, there exists a  such that  is

inside . this is these are because members of  where the point  is fixed from a local base

at . Now, we can take  equal to , where the  coordinate  is less

than  ok.

And, then check that  is contained inside  ok. So, even for points on  one has verified

regularity. To see that  is not normal is our next task here ok. So, we again take  equal to



the entire  and  equal to  ok. Similar to the earlier example ok,  we

will show that there is no open subsets containing  and  which are disjoint ok. So, that is

what we want to show. This is similar to  but, some somewhat easier maybe you can

see.
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For each , choose  and take that . Since  is positive,  will be in the

upper half plane right. Now, I am taking the full ball maximum ball of whatever possible

radius, that will be of radius . Put the point  also, this is an open subset now. So, such

an open subset will be inside , where  is either  or  according as  is inside  or inside

; that means, rational or irrational ok, for both the choice is done the same way. 

So, you can check you can use open balls, there are always such open balls. Each contained

either inside  or inside , according  inside  or . Now, for , let us define  to be

all  inside  such that . See for each each , I have a  that I have chosen. So, I

look at all those  such that the corresponding .

So, that is my definition of . Sicne for every  is positive it follows that the entire of 

will be union of  's. After all once it is positive it will be bigger than some . So,  is

union  of  's.  Now,  by  Baire's  Category  Theorem  on   with  the  usual  topology,  see



remember what is ?  is set of all irrational numbers. It follows that interior of  cannot

be empty for all of them right? 

We have shown that the entire of irrational numbers cannot be written as countable union of

nowhere dense sets. Because, then you can another set of countable numbers of singletons of

rationals, to get the whole of  as a countable union of nowhere dense sets. So, that is why

one of the  's must have the property that interior of   is nonempty. You fix such an

integer now ok. 

So far we have not used anything other than the fact that  and  are open ok. But, now one

of this has interior of   is nonempty ok. Choose an open interval   contained inside  ,

interior in the usual topology. There are subsets of  now. 
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So, there will be an open interval  contained in , and a rational number, say  belonging to

. If  is chosen appropriately, we claim that that something goes wrong.  

For any rational number  , we can always choose   positive such that   is

contained in . And then there are plenty of irrational numbers inside that interval.



But I am not saying that for all   this is true, appropriately chosen . What we claim is that

 intersection with the corresponding ball for  , viz,   will be non-empty.

That is the contradiction because these these two balls are supposed to be contained inside

two disjoint open sets ok? This one says  is rational number and  is irrational number ok.

So, that will imply that one is in  another other is in  and hence  is nonempty ok?

So, this is our claim: how to choose  is the point, so that this will happen.
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So, here is a picture what is happening here whatever  and , whatever they are there is some

 ok. So, this whole open ball along with this point is inside  or inside , that is how we

have got it. Now, I want that  and  are chosen such that they are intersecting here ok.  has

been  already  chosen,  so   should  be  chosen  close  to   in  such  a  way  such  that  the

corresponding ball will intersect.

Note that 's are already chosen, I have no control over that, but I can choose  itself closer

and closer to . So, how close I should choose is indicated in this picture ok. So, now, I have

just worked out 12th standard mathematics here. 
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So, 31 is true; that means, the intersection is non empty if and only if ,

which is the square of distance between the two centres, is less than , the square of

the sum of the radii. So, this is what I am playing. Go back to this picture: the distance

between the two centres must be less than the sum of the two radii.

So, that is the distance between these two, this distance total distance must be less than the

length of this one plus the radius of this plus radius of that which is  . So, there is

notational difference here,  this is the  and  that is all ok. So so, that is the first condition

, they are the radius sum total, if I take the square root of this, this will be square root

of that. 

So, as I have taken the squares on both sides ok. This is same thing as now simplify 

is less than , you take this one to this side  will cancel out ok.

Student: Ok.

 and   will add up, this will be  . It is same thing as now taking square root

 should be less than  ok? Therefore, choose now  to be less than  ok.



Suppose, you choose this , it follows that now what is this  remember, this  was fixed

such that the interval is contained inside the interior of . 

So, that n appears here, it follows that  is less than  if you if you if you have this one,

this  is less than  that will be less than . I want this one, I want the last thing.

If I have satisfied this  less than this one, then the intersections will be non-empty, the

31 will be true. So, now, I choose this  to be less than this one, then  is less than  will

satisfy this property ok.

So, this is because  is bigger than . So, that  part disappears here, you see the some

condition should not be depending on s; so, that I am choosing . So, this is purely in terms of

 now ok. So, that will be automatically less than this one because  part is less than . So,

this completes the proof that  is not normal.
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So, here is some exercises, maybe you can have your own exercise also, but I would not like

to encourage you to go on studying just counter examples. Nevertheless, if you are interested

in,  there  is  a  very  good book written  on this  one,  long long  back  ok.  I  have  given  the

reference  right in the beginning. So, I will indicate it to you later. So, you can read that book

ok.



So, thank you. We will meet next hour now ok.


