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Welcome  to  module  54,  we  shall  continue  the  study  of  Separation  Axioms  this  time,

concentrating on checking whether they are productive. The very first theorem here is that

regularity is productive ok? So, this is stated as follows: product  is regular if and only if

each factor  is regular. 

Just as in the case of Frechetness because regularity is hereditary, if  is regular then each

 is regular, why? Because you can always think of each coordinate space, each factor space

as a subspace of the product space right?  is contained , via .  So,

that is the subspace you know  can be identified with that subspace. That is what we have

been using already.

So, if the product space is regular, the subspace will be regular; that means, each factor is

regular that is easy. 



We shall now prove the converse; pick up  belonging to  where  is open in  ok. So, we

must produce another subset, open subset subset whose closure is contained inside  and this

open subset contains .

So, between  and  one must squeeze another open set ok. So, in the product topology

something is open means its a neighbourhood of   means, there is a basic open nbd. And

basic open set looks like what? We have a finite subset  of  and open nbds  of  in 

such that the coordinate is inside   for all  . This   is a finite set and look at the

intersection of  ranges from  to . 

That obviously contains  ok and that will be contained inside . So, actually regularity can

be checked by just using basic open sets. If I show that inside this, I can get another onbd say

 such that  is contained inside this one, that is same thing as doing it for  ok. So, you

can you assume that  itself is a basic open set that is all.
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Now, for each  being regular for each  contained inside  is open, you can find an

open subset  in  such that  is inside  inside  inside . Between  and , we can

squeeze another open set . So, this we can do for all i inside I, and then I take the product of

this  finitely  many  's  that  I  am calling  as  .  Then  one  thing  which we have  already



checked all the time is the closure of this product is the product of the closures, each closure

here is contained in corresponding . So, this product will be contained inside product of 's

ok.

Now, if we take  inverse of this one,  will be inside  because each  coordinate

 is inside  by the very choice 's are inside . So,  is inside , automatically it

will be contained this is closure what I need to show here it is contained inside , right.

Now, this is a closed sub set containing this one and this is  also a closed subset   is  a

continuous  map.  So,   inverse  of  a  closed  subset  is  closed  and  it  contains  .

Therefore, this closure is contained inside this one, actually these are equal here, but I am just

taking the easy way, no doubt this is contained inside and this has been chosen such that this

is inside   because it is this  . See   is in the inside this one. So,   is  

inverse of  these and these things are  contained inside  ,  that  is  the choice of  's.  That

completes the proof. 

So,  not  much hard  work  here,  regularity  is  productive.  So,  in  that  sense  it  is  nearer  to

Hausdorffness right? Indeed there is two schools of thought in topology, people from one use

Hausdorffness whenever they have difficulty, the other school uses regularity whenever they

have difficulty and they achieve similar results, in fact, identical results ok. So, in that sense,

regularity is quite near Hausdorffness. But the two concepts work in slightly different way,

that is what I wanted to say ok.
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But, somewhat surprisingly, normality which we tend to think is nearer to regularity, it has

weird properties. Normality is not even finite productive. The reason may be because it is not

even hereditary ok. Even one way it fails.  Even if  is normal it does not imply that 

is  normal  and   is  normal,  that  is  the  funny thing  here.  So,  we shall  see  now such  an

example. The example that we are going to see quite a beautiful example, which you are

already familiar with and we have studied quite a few properties of that; that is the semi open

interval topology.
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 is the real line with the semi interval topology, namely with the base consists of half-

closed intervals . Very specific! That is why it is denoted by , semi intervals; you could

have denoted by   also,  but  that  would mean you are taking   open and   closed.

These two are homeomorphic to each other. So, if you study one of them, you know the

other.  By just taking  goes to  you will get a homeomorphism, ok?

So, concentrate on this semi-interval topology, each open interval can be written as a union of

semi open intervals of this form right? Suppose I want to get  Then all that I have to do

is  union overall  will be equal to , right.

So, all open intervals can be written as this one, it follows that this topology is finer than the

usual topology because all the open subsets in the usual topology will be also open in this

topology. However, these half closed intervals are not open in the usual topology.

So, this is finer, strictly finer than the usual topology. Anything finer than a Hausdorff space

will be also Hausdorff. Therefore, this space is Hausdorff ok? Now, observe that every semi

open interval is also a closed, closed in  ok? So, when you have a base consisting of closed

sets, the topology therefore will have some very strong properties. And people have studied

such things.

So, all those properites will be available for this  , ok? Closed intervals are closed in

inside usual topology, but here even half closed intervals are both open as well as closed in

this topology. Why this is closed? Because what is its complement? , is by definition is

an open set  is open, that is also an open subset because you have just seen that every

open subset in  is also open here ok.

So, now if  belonging to such a basic open set , you can  to be  itself so that  is

in  is in  is in . See, regularity is satisfied trivially, here. You do not have to choose

another   at all. We have already seen that this space is Lindelof and the product is not

Lindelof, do you remember that? This was a remark. Let me just show you that. 
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We have already done this one. Then by showing that the diagonal is discrete in the product,

remember that this was the example right? 
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So,  here  we had  shown that  the  product  is  not  Lindelof.  Therefore,  you  know you  can

introduce a lot of things. Of course, this itself is Lindelof we have seen. So, this was not all

that trivial ok? You have to use the second countability of the usual topology and so on ok.

So, but I do not have to repeat that ok? we have seen this one that the space is Lindelof, but

the product is not Lindelof alright. 
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Now,  I  want  to  tell  you  that  this  semi  interval  topology  is  not  II-accountable.  Second

countable of course implies Lindelof. But this an example is anyway Lindelof space.  We

want to see that it is not II-countable. Why? If it were II-countable, then the product will be

also II-countable, because second countability is finite product invariant. Finitely productive.

That also you have seen.  But once  is II-countable, it will be Lindelof also. So, that

will contradict the previous observation that we have done alright. So, this  is a space

which is Lindelof, but not II-countable ok. 
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Now, here is a remark, we have used finite product invariance of II-countability in a peculiar

way, to see that the space under investigation is not II-countable ok? So, you see you can use

certain theorems in a negative way also. So, they also help in this way alright.
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Now, let us continue with this space. Finally, I want to show that the product is not normal

ok? Non normality of the product space. Just now, we showed that this is a regular space

right and the product of two regular space is regular. So, you will get a exmaple of  a regular

space, which is not normal ok?

So, how do you show that? This semi-interval topology product with itself is not normal.

Once again we go back and see that the diagonal is  a  closed subset  in the product.  It  is

actually discrete. So, that is what we had seen before ok. But now we want to use it very

crucially right.
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So, we have seen above that the induced topology on  usually   will denote the diagonal

. So, this is . This is discrete ok why? because you could take half open interval

cross half open interval, just touching the point on the diagonal. It is contained in one side,

upper side of the whole anti-diagonal.

So, such an open set intersect the antidiagonal in single points. So, that single point is open in

the subspace. That is how we have to done it. Now, this will help us in showing that the

product is not normal, we take  to be the set of all points  with  being rational ok?

Any subset of  is closed now ok? Similarly, take  to be the complement of  in . That

will be also closed, because the subspace  is a discrete space. And  is closed in the whole

space. So, these two are now disjoint closed subsets of .

A consists of points , where  is rational,  consists of ,  is irrational. Now, we

claim that there exist no open sets  and  containing  and  respectively, such that their

intersection is empty. In other words we start with  and  open,   contained inside ,  

contained in , then we show that  is not empty.
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Assuming on the contrary; that means what? Suppose you have two open subsets containing

 and  respectively  and . Since  are open it follows that for each  inside , there

exist a positive real number  such that  is contained in 

or  according as  is rational or irrrational.  

See these are points of our   and this is the product topology right. So, I am taking a

product  neighbourhood  which  is  a  basic  neighbourhood  in  the  product  topology,  this  is

contained  inside   or  contained  inside   according  as   is  rational  or  irrational.  If   is

rational it will be inside , if  is irrational it will be inside  ok. Of course, at each point the

lengths of these intervals  to , this  will depend upon  alright.

So, now fix a rational number   belonging to  . It follow that for all irrational numbers  

belonging to , what is this ? We have fixed these  remember that. I am

taking  the  same  thing  here.   is  in  .  If   is  irrational  then

 should  not  intersect  .

That  is  because   and   are  disjoint  and these  product nbds are  contained in   and  

respectively.  This  means   must  be less  than  .  Choose   such  that   is  less

.   



So, I am putting further restriction on . You can show that there is an irrational number 

such that . Therefore it follows that  is less that . Now, you

interchange the role of irrational number and rational number. You have started with , you

got a  with all this property, you fix this one. Now, apply the same argument to  to get a

rational number, with the same property, but this time you denote it by , repeat the above

argument  with   in  place  of   to  obtain  the  rational  number  ,  such  that   is  in

 and  is less that  which is less than .

So, one stage of construction is over. Starting with a rational number, you get an irrational

number with some property, that is all and their irrational number you get again a rational

number one cycle is over. Now, repeat this cycle, repeat it repeat it. So, what you get? You

get a sequence ok?
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So, I repeat.  In the first stage what I have done. Starting with a rational number  here, it has

some  and  is just little smaller that , on the left side. Corresponding interval should

not come over here. Otherwise these two would not be disjoint. So, the length of the interval

has to be at the most this much right. So, this  will have to be smaller than the difference

between  and . So, that is all I have got, ok yeah.



Whether I choose it here or here it is the same thing alright, but I have meticulously chosen it

behind here, that is all, ok. Now, I can choose the next rational number on the right side of 

So,   just like in the Liebnitz series ok? Alternatively,  they will  be

between  and  ok. So, that is how I am going to choose those numbers here. For one cycle

it is clearly stated and you repeat it ok.
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So, what do you get? Repeating this process we get two sequences  and , such that each

 is rational number, each  is an irrational number; 's are inside  and

 are inside . So, this is this is this minus this, is on the left side, this is

on plus side on this side for all n ok. And  will be less than equal to  and that is

less than equal to  and so on, all so on.  to the  unit  unit.

By the by at the  stage you will have what?  and so on, , for all . For all irrational

numbers  between , we have  is less than equal to . Once you

have chosen that one for everything in between also the length of those intervals which you

have chosen has to be short. Otherwise, they will collide with the other you have one which

you have chosen for the rational numbers ok.



And the basic assumption is that  and  are disjoint, that is all. Now you see that there is a

contradiction  here.  For  all  rational  numbers  for  the  same  reason   belonging  to   to

, we should have  less than this number.
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So, it follows that both the sequences tend to a common limit ok say , that is clearly   is

decreasing and  is increasing. I told you this is similar to the proof of you know alternating

series,  why  it  is  convergent  it  is  similar  to  that;   is  decreasing  and   is  increasing

monotonically and hence the limit will be between  and ,   is less than equal to   less

than equal to  for all .

But then from 6 and 7 combine together, whether  is irrational or rational it follows that the

corresponding  has to be less than  for all  this  is independent of . So, when

you take the limit of this it will show that  is .

So, the contradiction is to the fact that we can choose you know open rectangles around each

point on the antidiagonal such that one set of rectangles are inside  others are inside , they

are disjoint.  
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Next,  one  small  observation  is  that,  this  semi-interval  topology is  not  metrizable.  Why?

Because if it  is metrizable,  its product will be also metrizable.  Metrizability means what?

There is a metric. The product topology is given by the product metric right. If it is product

metric, then it will be normal a contradiction, because just now we prove that it is not normal

ok.
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So, that is the contradiction. Here I have put a few exercises to you, try them. They will only

illustrate  and  you  will  get  more  and  more  familiarity  with  the  concepts  here.  Complete

regularity is hereditary ok.

So, Hausdorffness then regularity, complete regularity fine. Normality? It will fail. That is

what you have yet to learn.  

Next, to check complete regularity of a space , you have to verify the condition for only for

memebrs of a subbase. You have to prove that. 

For each point  belong to , where  is in a subbbase, there exist a continuous function

 such that  is  and  is . Just be careful and be done with it and you can verify it.

So, that will be helpful especially while dealing with products. So, I have put that one as an

illustrative example, an exercise which will help you to solve the next exercise. 

Show  that  the  product  of  completely  regular  spaces  is  completely  regular.  One  way  is

obvious because of the hereditariness ok. After that you show that the lower limit topological

space   is completely regular  and hence conclude that   is  completely

regular ok. In particular this gives you an example of a completely regular space which is not

normal. we just prove that it is not normal ok. So, let us stop here and take up this study next

time.

Thank you.


