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Welcome to module 53 of point Set Topology course part 1. Today, we will continue the

study  of  Normal  Spaces.  Characterization  of  normal  spaces.  Last  time  we  did  the

characterization due to Urysohn. Now, we will do the characterization due to Tietze. Tietze's

characterization  is  another  landmark,  but  it  actually  uses,  you  know,  Urysohn's

characterization, construction of continuous functions.

But it is quite mysterious in a sense that here we have only one closed set. So, it requires

quite an ingenious mind to have explored this one. So, it is not at all easy to come up with

this kind of idea. So, let us look at the statement here. A topological space X is normal, if and

only if it satisfy the following condition which I have put as Tietze condition.



So, what is the condition? Given any closed subset  of  and a continuous function  from

 to  ,  there  exists  a  continuous  function   from   to  minus   such  that  

restricted to  is , ok.

Obviously, here  is a nonempty subset ok? That is otherwise we do not have any continuous

function  from  to . So, this is the hypothesis. Given a closed set and a continuous

function ok. So, there is no need to worry about that,   being empty and so on. So, every

continuous  function  defined  on  a  closed  set  can  be  extended  to  a  continuous  function,

retaining the co-domain as it is namely any closed interval.

So, we are using the model interval  .  I  have already told you that you can always

change the co-domain to any closed interval each time ok. So, that is not very crucial, but

now instead of  as in the previous theorem, we will use  which is more convenient

for the writing down the proof ok. 

(Refer Slide Time: 03:41)

Assume  that   satisfies  the  TC,  given  any  two  disjoint  closed  subsets   and  ,  put

. And apply this condition to get a function  from , namely  for

 and  for  ok?  is continuous because  and  are disjoint closed sets



ok. So, this makes sense. Only two values you have taken, on  it is , on  it is . But now

 will get extended to a continuous function from  to .

So, there is some  here  restricted to  is  ok. So, that is the condition for the Urysohn's

characterization UC. Therefore,  is normal by the above theorem alright. So, we have taken

a  shortcut  here,  used  Urysohn's  characterization,  instead  of  trying to  prove  open subsets

etcetera alright? But in the converse proof also you are going to  use Urysohn's theorem.

Anyway, one way is done.
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Now, let us proof converse again, this converse is taking up some time. Assume  is normal

and   containing   is  closed  and  a  map   is  given ok.   is  defined  only on   and  its

continuous there, we have to construct a map  from  to  such that  restricted to  is

. So, here we shall use the fact that set of all continuous functions from  to  ok, they

form a Banach algebra, Banach space remember that with the supremum norm. 

Remember that we had introduced the set of all function from  to   or  , whatever, and

then we took the subspace of bounded functions, on which we put the supremum norm. Now,

if we have continuous functions, continuous functions on  ok? They may not be bounded,

but here I am taking they are bounded by actually , the values are inside .



So, this will be a subspace of that Banach algebra alright. This norm makes sense because

now all functions are taking values to  ok. We also saw that the subspace continuous

functions is a closed subspace of this Banach algebra and therefore, this itself as as submetric

space, (it is non-linear space) it is complete.  

That means, Cauchy sequences will converge inside this one, which just means that if you

take a Cauchy sequence of continuous functions from  to , you can take the limit in

that larger space. But that limit is continuous. Therefore, it is in the smaller space ok. So, this

also you have  seen  the convergence,  with respect  to  the  supremum norm is  nothing but

uniform convergence ok? So, this is what we are going to use. Essentially if you do not want

to use all these terminologies, all that means that if you have a sequence of continuous, real

valued functions ok which converges uniformly, then the limit function is continuous.

So, this is the fact that comes out of ordinary analysis. So, which we are going to use it now

here ok. How are going to use? Inductively, we shall construct a sequence  , from   to

 such that summation 's, these are partial sums, that is a sequence, not the sequence 

, the partial sums that sequence converges uniformly to a function  from  to . And it

has this property that norm of  converges to .  Because  is only defined only on 

, this norm should be taken on . So, the same norm restricted to , ok.

So, all these 's restricted to  . Of course,   makes sense on the whole of  , but   makes

only on . So, that is the meaning of this one. So, this is what we want to do now. So, I will

explain these things more carefully in what comes here. 
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Put . Take  equal to . Having defined the map  from  to  for some ,

inductively we are going to construct the next . So, for that put  equal to 

and . Then clearly  and  are disjoint closed subsets of  ok, which itself

is closed in . Therefore,  and  are disjoint closed subsets of . Hence, by Urysohn's

Lemma, we get a continuous function  from  to , remember this  is a

continuous function which has the property that on  it is equal to  and on  it is equal

to , that is all we are going to use it here ok.

After that we put  . Finally, we define   as   restricted to   is

defined on  already,  is defined on the whole of , but we take  restricted to  and take

 to be  restricted to  on the subset . The inductive definition of the sequences

 and  is over.
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Next task is to show that these things converge to whatever we wanted to. Namely, first of all

 and  are both continuous. Norm of  is . Therefore, norm of  is . And 

is  actually  .  This  just  means  that   converges  uniformly  to  some  one  function  .

Because of uniform convergence that function is automatically continuous. And it takes value

between  ok? I repeat. This function  is continuous, because it is a uniform limit of

sum of finitely many 's here, each  is continuous. As  tends to infinity, the convergence is

uniform convergence. Therefore,  is continuous.

We now claim the second part (ii) namely, norm of  on , that is, supremum  where

 ranges over , right? That is the definition, we want to say that this is less than or equal to

. Again the proof will be by induction. When   is nothing but   ok? And

 is  and  is our function , which is taking value between .

Therefore, norm of   is less than equal to   ok. So, assume that this statement is true for

some , then we shall prove it for  ok. So, let us examine what happens to the function

. Suppose  is inside , by the very definition of ,  will be between  to .

So, it is less than equal to .



On the other hand, the induction hypothesis says that -  is less than equal to , the

modulus of this  is less than equal to  this is the induction hypothesis. So, if you put

them together, now you subtract  on  is  right, so we have to add . 

So, what I get is  which you can verify is same thing as , that is less than or

equal to this is , but this is the same thing as  now because   is same

thing as  ok. So,  is less than equal to  here , ok.

Exactly similar reason, not exactly same reason when you take  is inside  this becomes

now  becomes , etc, finally, you will get a similar thing namely what you get is that

So, what remains now? Look at a point which is nor in  nor in  ok, then both  and 

are in the interval  by definition, because if it is not in , it is bigger than  not

in  it is less than or equal to  ok. So, such a point automatically satisfies  ok less

than or equal to  and bigger than or equal to .

So, modulus is less than or equal to   because both   and   are inside this one,   is

always between  to . So, this completes the proof of inductive claim that norm  on 

is  less  than  equal  to  .  For  the  same  reason,  because   is  convergent  and  the

sequence is is dominated by this , it will follow that  converge this to  as  tends to

infinity because these thing converge to  ok.



(Refer Slide Time: 17:55)

Now, what is this   then? Mysterious thing? Why these  's? That  is clear because   is

nothing but the remainder after   terms ok. I could not say that one because, before that I

have to show that the series is convergent. So, we have shown that  converge uniformly to

 inside , but now, if  belong to , then  is  by definition. What is 

? 

So, you club them together, it will become , but again we repeat

this process to  to  plus all this. So, go on doing that till you hit  is 

and this term will become . First f n, then  etc up to  all these terms will come.

So,  is nothing but , this is the second statement we wanted to show that

norm of this converges to , norm of this same thing at  of norm, norm of this one. And

we have shown that this converges to , ok. So, you see that this is just a partial sum and this

is remained after  terms that is the whole idea.



Upon taking the limit, this is , this will become  now. Because  ranging to  to infinity is

our   alright. So,   norm is   it just means that  .  So, these are all

happening for every  inside . So, that completes the proof of Tietze's theorem.
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So, let me make a few comments here yeah. Since any two closed intervals, I am making this

comment again, of positive length are homeomorphic to each other. We can use, instead of

 or  we can use any interval  ok. But in the proof of the above theorem it was

crucial  that  the co-domain was  a  closed interval,  you are  going to  take  limits  of  certain

sequences, for each point you are taking limits. So, they are sequences of points of . So, the

limit point could be in at end points of the interval, I mean that is possible right? So, even if

you start with the function, suppose the given function  is taking values in the open interval.

Extended function may not be taking values inside the open interval. It may hit  or  that is

possible ok? Yes or no? So, because when you take open intervals, you know open interval is

not complete. So, you cannot use all these completion results that is the whole idea ok.

But you look at the statement of the Tietze theorem, this point will not afffect it. In other

words, I want to have a theorem like this. Suppose g is a function from  to an open interval.

Then I can extend it from  to the open interval itself. So, that is the statement ok? That is



not the part of the statement in the theorem as given above but it is extra statement we have to

work out. And there is a trick which will help us to prove such a theorem.
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So, let us do that. So, this is the statement here. So, I have stated a separate theorem that  be

a normal space,  contained in  is closed, then given any continuous function  from  to

the , there exists a continuous function  from  to , such that  restricted to 

is  ok? Directly from the theorem that we have proved this one does not follow, that is the

remark I made ok?

What follows you can go to the closed interval,  taking inclusion of  this  one into closed

interval, then you will get an extension  of , from the theorem. So, that much is true. Now,

how to come back to the open interval here is a trick. 
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Applied Tietze extension theorem 4.39 to the map  treated as a function from  to ,

we obtain a continuous function . Let us call it , because this is not going to be  from 

to   such  that  restricted  to   it  is  ,  what  may  happen  is  the  following:  Look  at

, just the two points. Put that as , that is a closed subset. This may be empty, if 

is empty then we are happy; that means,  is inside  so we can take . If A is

not empty then we have to work harder ok?

In any case  is a closed subset of  disjoint from ; why? Because to begin with we have

started with a  such that  is taking values strictly inside  and  is restricted to  is .

So, this   and   are disjoint subsets and both of them are closed. Hence, you can apply

Urysohn's lemma here ok? To get another function  from  to , such that  is  and

 is .

So, you see here I am using again  as the domain instead of . That is deliberate, it

is not just arbitrary ok. So,   is   and   is  . So, whole idea is you do not want to

disturb the  part. So, you have put this  here, you do not want this  part. So, you have to

kill  it,   is  .  That  is  the whole idea. Now, you multiply the original   with  , take

. Ok?



This is a product of two functions, both of them taking values in  right? So, this will

take values in  there is no problem and it is continuous. And when you take  inside 

this  is . So,  is  which is , the original . 

Therefore, all that you have to show is that the new function  takes values inside  ,

right? Then the theorem is over. Why it does not take the value in  ? That is what I

should ensure now.
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So, suppose modulus of  is equal to , but what is modulus of ? What is ?  is

 ok. Suppose for some , it is equal to , either it is   or   then  and

 is inside  for all , remember that. We must have modulus of  actually equal to

, even if any one of them is smaller than  then the modulus of the product will not be equal

to  ok. So, both the modulus must be equal to , Modulus of  is already  because this

is already non negative, so  it is actually equal to .

But then after multiplying by  what we get?  is equal to . But  is

equal to  implies  is inside , remember that  was defined as  as well as of , but

then  is  and  is . But just now we have  is  means right hand side would be 



this cannot be . So, we have shown as  is also . So, that contradiction proves that modulus

of  is never equal to , ok?
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So, I have studied this is trick, this kind of tricks are used quite often in algebraic topology

also. So, in summary what we have proved is Tietze extension theorem the co-domain can be

replaced by any bounded open interval instead of a closed interval. But  is homeomorphic

to any open interval. Therefore, you can take the whole of  also.

Finally, if you carefully watch the proof of the above theorem you will notice that it can be

easily adopted to half open intervals also. If you do not want to avoid both the end points,

you have to work only for one of them. So the set  which you have taken to be  inverse of

minus 1 plus 1, you take it to be inverse of inverse one of the end points only.  So, it will

work for half open intervals also ok.

Therefore,  all  these statements  can  be  collectively  called  Tietze's  extension theorems for

normal spaces. Given continuous function on a closed set, taking values in open   half

open   or closed  , whatever,  you take the co-domain ok, with the same codomain

there is a continuous extension of the function  to a function  on the whole of .



So, that  is  the way you have  to  understand Tietze  extensions theorem at  various  places,

whichever form is necessary for you can use that alright.
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So, that  is  the way you have  to  understand Tietze  extensions theorem at  various  places,

whichever form is necessary for you can use that alright. 

Urysohn's characterization of normal spaces drew a lot of attention. Tychonoff came up with

an idea of adopting a somewhat weaker version of the Urysohn's characterization, but one

which  is  stronger  than  regularity.  So,  another  concept  came in  between,  which  is  called

complete regularity.
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A space  is called completely regular, if it satisfies the following condition: Given a closed

subset  of  and a point  belonging to , (remember this much was the hypothesis for

a regularity, but instead of two disjoint closed subsets, one closed subset and a point outside it

ok?  Then  instead  of  open  sets  and  so  on  now),  you  have  function  i.e.,  There  exists  a

continuous function  from  to , such that  and  is . So, this is a perfect

mixture of regularity condition and Urysohn's criteria. A mixture. Such a space is called a

complete  regular  (CR)  space.  As  usual  normality  does  not  imply  CR,  simply  because

singletons may not be closed. 

This complete regularity is an important concept in metrizability problems. I think Urysohn

may have tried to prove some immedability results through which to get a metrization result.

That may be thre motivation for him to explore and come up with the result which is now

known to us by his name.

Now ok,  so  this  complete  regularity  is  important  in  metrizability  problems,  that  will  be

discussed and taken up in part II. So, I am just giving you a glimpse of that here, even if you

forget it, it is ok. So, I think we are now convinced that why Urysohn's lemma is so important

alright. So, let us ah meet next time.



Thank you.


