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Welcome to module 52 of Point Set Topology course Part I. So, today we shall take up the

study  of  normality  again,  Characterization  of  Normality;  characterization  in  terms  of

continuous functions. In fact, we will have two different characterizations which are closely

related to one another. One is due to Urysohn and then using that another one is due to Tietze.

The central idea is that the set of all continuous real valued functions on a space must be able

to reveal some properties of the space itself. Often in algebraic geometry and sometimes in

algebraic topology also this is the central theme. Look at the set of real valued or complex

valued functions or those which have some extra properties and so on, declare them as what

is known as coordinate space coordinate ring. And then the ring will dictate all the geometry

and topology.



So, this is the theme they follow. We do not go into that depth here, but the idea of why we

need such a thing like characterizations only for that reason I am telling you so where it is

much more important than to us. 
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So, we can ask a vague question, how large is the set of all continuous real valued functions

on  a  given  space  .  The  study  of  this  leads  to  a  different  kind  of  topological  results

altogether, with applications to problems such as I have just mentioned a few of them here--

metrization problem, embedding problem. Embedding problem just means that take a space

whether it can be embedded inside some Euclidean space of finite or infinite dimension.

And exploring the inter-relationship between the ring structure,  the algebraic  structure of

 with the topological  properties of  . So, these are the few things. For example,

when you go to function theory, it is not all continuous functions they take. They will take

analytic functions ok. So, that is what is important for them in complex analysis for example.

If you go to algebraic geometry they will only take polynomial functions ok. So, it depends.

For us, if you want to study the entire topology you must better take all continuous functions

ok. In differential topology you will take differentiable functions, smooth functions and so



on. So, we shall not be able to discuss any of these topics, I mentioned three of them in this

course more than what I have mentioned.

And  I  have  mentioned  it  only  because  why  the  Urysohn’s  characterization  or  Tietze

characterization is important, but some of these problems and applications will be taken up in

Part-II of this course, ok. So, let us proceed with these characterizations.
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And  I  have  mentioned  it  only  to  show  why  the  Urysohn's  characterization  or  Tietze

characterization is important, but some of these problems and applications will be taken up in

Part-II of this course,  ok. So, let us proceed with these characterizations. How one might

have,  you know, come up with this  kind of  thing?  I  would  like to  know. I  cannot  read

Urysohn's mind nor I can go back in history, go back in time an ask him. So, I am guessing

that this may be the one which led him to consider such a thing. 

So, again go back to metric spaces. Take any subset . Consider the distance function from 

. So, distance function is defined on  ok? Gere  or  you can write it in two

different notations, which is nothing but the infimum of all the distance between   and  ,

where  ranges over  is fixed. So, that is the distance from  ok, the infimum of all these

numbers.  



For the point  distance between  and  is defined by this formula. It is easily check that 

is continuous ok on the whole of . And clearly if  is inside , then  of you know, we can

put . So, that will be . So, infimum will be . So, it will vanish right? But it will vanish

on  also. In fact,   is precisely the set wherein this function will be identically  , ok? So,

that is easy to check.
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Now,  let   be  another  set.  Consider  the  function   from   to   defined  by

. See for  and , we have defined  and . Take the

difference.  nothing special here. First I took  and then I am taking , that is why I am

writing, otherwise I could have taken  also as good as this one, one will be

the negative of other.  

This function is again continuous because it is the difference of two continuous functions and

it is non-positive on the closure of  because the first term will be . And on the closure of 

it is non-negative because the second term will be , ok? 

Now, you take a special case when   and   are disjoint closed sets. When   and   are

disjoint closed sets at least one of them must be non-zero for all the points because  and 



are disjoint. So, if   and   are both   will be inside  . So, there is no

intersection right? That is it. 

Therefore, the sum function will never vanish . What does that mean? I can

divide by that function ok, sum and difference are both continuous, sum is never . Therefore,

this quotient function is also continuous.  I am calling it  ,  ok. So,   is the difference

function divided by the sum function.

Why one would think of this one is  itself say a moot question, but I think, since I could think

about this one, so, Urysohn also must have thought about this one. How I thought about it

also is a mystery.  I could come up to this one after long thinking.  This must be the reason. 

Now check  that   is  from   to  ,  because  the  numerator  is  never  bigger  than  the

modulus of the denominator, ok. Denominator is already non-negative, actually positive. So,

this is always true. The image of f will be between  and , ok?

Moreover,  and  are closed subsets, we know that if  belongs to ,  is . So,  is

 divided by  which is . Similarly, . So, you see what we have

produced a continuous function from the whole of , which is  on  and  on , ok.
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Now, you can take just a little a small neighborhood of  and a small neighborhood of . I

have taken sufficiently large namely  and here . Only thing is I have been careful

that they are disjoint open subsets in  . Take the inverse image. Call them   and  .

They will be disjoint open subsets of , ok? Clearly they contain  and  respectively ok. 

So, suddenly what we have proved is that disjoint closed subspaces of a metric space can be

separated by open subsets. Actually they can be separated by continuous functions. So, in

particular, every metric space   is normal. Indeed since every metric space is normal and

subspace  of  a  metric  space  is  also  metric  space,  it  follows  that  every  metric  space  is

completely normal ok? It is completely normal. 

Also we have seen that singleton sets are closed in a metric space.  That means,  they are

Frechet spaces. Therefore, complete normality implies regularity as well as Hausdorff-ness

also  ok.  Once  they  are  Frechet,  regular  implies  Hausdorff.  Complete  normality  implies

regularity, complete normality implies normality anyway, ok?

So, all these things are true for a metric space. So, why I am guessing is that perhaps this

function  was the motivating example for the celebrated result known as Urysohn's lemma.

Of course, it is due to Urysohn. There is no mistake in that. 
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So, this is the lemma. A topological space   is normal if and if it  satisfies the following

Urysohn's condition UC. So, again and again I will be requiring this condition. So, I will

named it UC; Urysohn's Condition. What is this? For every pair of nonempty disjoint closed

sets  in , there exists a continuous function  from  to  such that  and

. 

See  just means that  has to be nonempty, similarly  has to be nonempty. For

that reason we have to assume that they are nonempty disjoint closed sets ok? Otherwise, you

know, definition of normality, you could take, in whatever definition you take three of them,

you could take  or  empty as well ok. It does not cause any problem there. 

But if you want to have a function theoretic characterization here then you have to take  and

 are nonempty. Then only you can write  and . You can also do 

and  here by changing the interval, the codomain interval, by a homeomorphism ok. So, that

is not so crucial. Getting a closed interval as a co-domain ok? Getting a function  from this

one wherein the two sets are going to two distinct points that is the crux of the matter.

It could be that   is equal to some   and   equal to some  , where   and   are

distinct real numbers. So, that is a crucial matter here alright? 
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So, one way is obvious which we have seen already  in  some sense.  Assume that  UC is

satisfied by . Take   and  any two nonempty disjoint closed sets and take a function 

from  to  continuous function. So, say  and . Then take 

and  .  Take  the  inverse  images,  call  them   and  .  They  will  contain   and  

respectively. So, that is the condition for Urysohn's the normality. 

If one of them is empty you can always take that. Suppose  is empty then you can take 

empty and  equal to whole of . So, that is obviously, satisfied. There is no need to worry

about that. So, normality is satisfied if UC is satisfied. The converse is where we have to

work harder. Well, real hard work is done by Urysohn. We are doing hard work in a different

sense we have to learn them properly right, ok.
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Now, let  be normal and  and  be nonempty disjoint subsets. The second condition in the

theorem, tells you something: take  and .  is contained in .  is closed,  is open.

There will be an open subset , such that  is contained in  contained in  contained in .

So, I am using the second condition in the definition of normality.

So, we have started a process here. There is going to be an iteration of this. So, I am denoting

the first iteration, this  by  ok. Use of this notation will be clear in a moment. So, you



have to wait. Right now it will be better if you write it as  ok. So, but now what I want to

do? That is what I have to tell you.

Apply the normality to both the situations. So, this is almost like you know this is one point

and there is another point and I have chosen the half of the middle of them. If you have

chosen middle from the first point to middle and the middle point to the second point again

you can choose middle of them, so, that is the kind of thing that is going on here.

But middle does not make sense here, something in between makes sense, with the relation of

inclusion of sets. That is what is being done. So, what I want to do is now between  and

 and  and  ok, I introduce two more open subsets which we shall denote by 

and  respectively such that...

From  to ;  is open,  is closed.  will sit there contained in , contained in

.   is contained inside   that is already there. We are using that one now. This

 is closed and  once again open. We will have one more open subset in between there,

viz.,   contained inside  contained in . 

 See what I have done? 

From , half of that is  . Between  and , I have . So, keep on cutting down by

half. What are those numbers? Next time you will get ,  right.

So,  those are numbers. So, what are they called?
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They are called dyadic rational numbers. Rational numbers whose denominator is always a

power of . But I want only all of them between 0 and 1. I am including 0 and 1. 0 is taking

the place of  ok? and 1 is taking the place of . I do not need to write uh any other symbols

for  them. In between I am going to  put  all  these open sets  such that  they are of course

contained in their own closure and then the closure is contained in the next one and so on.

So, that is what I am going to do. Next step will be an open subset between  and  that is

 and one on this side also in everywhere in between you know.  is closed and  is

open. So, between them I need to put one more one more open set and so on. So, go on

squeezing open subsets in between ok?

So, let  denote the set of all dyadic rationals in the interval . Namely, integer  divided

by  ,   and   are positive integers ok?   less than  , you can take   to be only odd

numbers if you like. If there is some power you can cancel out, but I want  to be less than

, ok. Carrying on with this process we obtain for each number here an open subset  ok.

So, all these new open subsets of  are indexed by this set. So, what is the property? All of

them are neighborhoods of  is contained inside .  is contained inside .  is always

contained inside . So, this much is obvious, but more than that between  and , what is

the relation? 



As soon as  is smaller than ,  will be contained inside . So, this is the property ok? For

example, it does not depend upon whether I have chosen them first time or second or third

time and so on, it depends upon whether the corresponding indices are bigger or smaller. For

example, the first one that I have chosen is , in the second stage I chose . So,  is

contained inside , ok. 

So, next I will be choosing you know  or   and so on. So, you have to compare the

indexing numbers first, that can done easily. The corresponding sets also must be compared

in a stronger way. Namely, the closure of the smaller indexed one must be contained inside

the other open set. So,  is contained inside , ok? All that we have done is repetition of

the normality condition inductively, ok.
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Now, we have produced a continuous function out of nowhere. The crux of the matter is the

dyadic rationals are dense inside   ok. So, once you have some way of nominating these

indices, one can cook up functions out of that that is the idea. So, define  equal to 1 ok, if

 is in  for all . It does not belong to any of 's, ok?



See all 's are insides what?  itself is inside . So, if   is in , then I am defining 

to be  ok. Otherwise, I will define it as infimum of all  such that  is inside . See at least

this set is nonempty. Therefore, infimum makes sense, ok.

Anyway it is bounded below, all these numbers are bigger than or equal to , actually bigger

than . So, it is bounded below by . So, infimum is a finite number. If this set is empty, then

you would have a problem. So, whenever a set is empty, define  to be . That is the idea.

Take the infimum of all  such that  is inside , ok. Since all the  all 's are between  and

, infimum whatever this set is it has to be between  and  and this part is . So,  is less than

equal to  less than equal to , this is obvious from this definition.

Now, the first one says what? The closures of all 's are contained inside . So, from this,

it follows that  will be . The infimum of all the dyadics inside  is . And  is 

because if  in  then  is not in any of the 's.  So, it is in the complement of  for all of

them.

So, the set theoretic properties of  are already done very easily. The missing point so far is

the important one viz., that   is continuous ok? Producing continuous functions, you know

very few such results are there. Often proving some continuous function is a homeomorphism

is difficult too but easier. Here producing continuous function itself. So, this is something

fantastic that Urysohn has done.(Refer Slide Time: 27:42)



So,  first  we  observe  that  the  collection  of  all  intervals  of  the  form   and   for

 forms a subbase for the usual topology on the closed interval  . The usual

topology on  and then I am taking restriction to . So, I have to restrict the members of

the subbase also. So, I do not want to take anything other intervals which are sub intervals of

. You have to take open there, but these are half closed intervals. So,  this will be

also an open subset; that is the difference. Similarly,  these are also open subsets of the

closed interval . Suppose you take  and intersect it with ; what you get? You

will get   only right? So, this is what it is. Hence, once this is a subbase, to prove the

continuity of , it is enough to prove that inverse of  is open, and similarly,  is

also open, where  and  are arbitrary points of . 

For that I am explicitly proving that   is union of all the  's such that  , ok?

Each  remember it is an open subset. So, union is also open. For all , I am going

to prove this. Similarly, , I am going to prove, is union of all . You see closure is

closed, the complement is open. Again this is an open subset, but now this time , ok. So,

if I prove  (iii) and (iv),  the proof of the theorem will be complete alright. 

Let us prove (iii). Take a point   inside  such that it is on the left hand side. What is the

meaning of that?  is strictly less than . Of course, it is always bigger than equal to , ok.

This implies, remember what is the definition of ? Infimum of all  such that  is inside

. This  is less than , ok? What is the meaning of infimum is less than some number? 

There must be something here which is less than that, that is there exists  such that  is in

 and this  , because infimum is taken over all such  . So, I have not done anything

other than appealing to just the definition of infimum ok, not very serious also. So, LHS of

(iii) is contained inside RHS. For each point , I have found a  here, as needed. alright? 

The other way inclusion is obvious. As soon as   belongs to  ,  ,  infimum will  be

smaller than that  ok? And  is less than . So, it will be here;  will be less than , right.

Even if one  is such that  is in  and that , it will yield that infimum will be smaller

than a. So,  will be less than . So, it is here. So, this way containment is obvious alright. 
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To prove (iv),  let us take  to be such that . If , then remember when it

is ? It is inside  for all  belonging to . No  will contain , it is in . So, fix some 

belonging  such that such that ; between  and . There must be some . What is ?  is

an element of . So, this is where I am using the fact that the dyadic rationals are dense. So,

we can find a  belonging to  such that this . See I have chosen . So, between

 and , I can do another . So, that is also again by density of .

So, I can choose actually  and . It follows that  is contained inside . This

was the property (ii), right? Since  is inside  ok, and  is contained in . So, one case

is over, namely, if ,  belongs to one of .  Remember what I have to show. I have

to show that every point on the left hand side namely point  such that  is in the

union of all  and so, I have found one such .

Now, it may happen that . When  is strictly less than , the definition of 

uses the second condition. Namely,   is infimum of all   such that   is inside  . This

means that there is a  such that  is inside , first of all right? And then you have to take

that  that  is bigger than , but less than  is, what I assume.



Also it follows that   is not in  for any , because  is the infimum of all

such . So, if   is smaller than ,  cannot be in  because  is the infimum ok. So,

now, you take , where . Again I am using density of  here ok?

Then   cannot  be  in   implies  that   cannot  be  in   because  all  the  closure  of

corresponding things are contained inside  ok, which is the same thing as saying that  is in

. So, we have found another element which contains the point. Hence LHS is contained

inside RHS. 

So, you see the proof of (iv) required us to use the density of  at least 3 times here.

So, proof of (iii) was easier. The proof of (iv) took some time right? 
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We have not yet completed the proof. What we have to do? RHS is contained inside LHS

right? Even that is also not obvious. In (iii) it was very easy. In this part little more you have

to say. Suppose  belongs to RHS. RHS is what? Union of all .

So,  is in one of them for some  which is bigger than ; that is the definition of the right

hand side. This implies that  cannot be in  for any  where . So, between  and 



if you take another  here,  will not be inside  because  is not in  itself.  is inside ,

ok.

On the other hand, suppose  is not in the LHS of (iv) ok. I took it is in RHS, I want to show

that it is in the LHS. LHS means what?  is smaller than ,  is of course, smaller than

equal to . So, that is the meaning. So, suppose on the other hand  is not in LHS then 

must be less than or equal to .

 is less than equal to  means what? Infimum is less than equal to  ok? Then  must be in

 for all  because the infimum is less than equal to  right. Once  is already inside ,

 bigger than that one it will be definitely inside  also. Because  is contained inside 

for all .

So, but that is absurd because we have just shown here that   is not in   as soon as   is

between   and  , but here it says that for all   it should happen. So, that is absurd. So,

RHS will be contained inside LHS. You start with a point in RHS, it is contain inside LHS.

This is what it is. So, this proves (iv) and hence the continuity of . Thus the completion of

the proof is done, ok.
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So, I made some remarks here. In UC, I have already done this one. I will repeat it. You can

freely  use  any  ,  in  place  of   by  merely  composing  with  the  linear

homeomorphism   going to  . Often it is convenient to use the interval  

instead of . 

Like the metric that we considered you know  divided by 

; it was between minus . So, that is what we are going to do next time, but sometimes

you may have to choose some other intervals also. So, any closed interval you can take, no

problem, ok. 
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That is the comment here. There is no assertion about the uniqueness of the continuous maps.

In the UC there exists some continuous function. There may be plenty of them, indeed, there

are lots and lots of function. The difficulty was showing that there exist one, after that you

can cook up many many of them ok.

So, one of the special  function you know very specific one, I am going to use that. So, I am

going to introduce a notation here ok, a temporary notation. Like in measure theory, you have

this the characteristic function. Let us introduce a temporary notation, which we will use in

the proof of next theorem that we are doing.



Given any two disjoint closed subset  and  of , let us denote it by , (so, it depends

upon both  and ) a continuous function from  to  such that on  it is  and on 

it is . There are many of them ok. Take any one of them, just call it . Depending upon

the context. All that I need is that it has this property and it is defined on the whole of  and

its continuous. That is why I am just writing this . The only thing that we need here is

that if  is normal then such functions exist ok. So, choose any one of them and temporarily

write it as . So, this is what I am going to do next time.
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So, this comment also I have made, but I will repeat it. We have mentioned that normality is

not hereditary. We have not proved it yet. However, it is weakly hereditary. Namely, every

closed subspace  of a normal  space is  normal.  That  is  very easy to  prove because  closed

subspace of a close sub space is closed.

So, start with a start with  as a closed subset of . If  and  are closed subsets of , then

they will be closed in   itself. Therefore, normality of   will produce open subsets in  ,

which contain   and   disjoint subset. Now, we intersect them with  , ok? So,   will be

normal.  So,  closed  subspace  of  a  normal  space  is  normal  ok?  And  that  information  is

important and we are going to use that also in the next theorem, ok.
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So, let us stop here. For the next theorem tomorrow.

Thank you.


