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Welcome to module 51 of Point Set Topology, Part 1. So, as promised last time let us now

start the study of regular spaces and normal spaces.  As before in the case of Frechet and

Hausdorff, I will first state a theorem which gives you a number of equivalent conditions and

then make the definition that a space which satisfies any one of the conditions will be called

regular or normal and so on that is the general plan.

So, this theorem says that  the  following conditions on topological  spaces  are equivalent.

What  are  the  3  conditions?  Given  a  closed  set   and  a  point   away  from  ,  in  the

complement,  there  exists  disjoint  open  sets   in   such  that   is  inside   and   is

contained inside . Just like in a Hausdorff space any two points are separated, here a point

and a closed set are separated by open sets.

So, you can see that this is a one step generalization of regularity ok?



Next, for all x belonging to  and open set  such that  belongs to , there exists an open

set  such that  is in  which is contained inside  and is contained inside . So, in other

words, you can say that every neighborhood of a point contains a closed neighborhood.

Remember a neighborhood should be such that there is an open subset contained inside that

one containing the point ok. So, this   will be a closed neighborhood   was an arbitrary

neighborhood, it need not be open actually. Here I have taken an open set . That is enough

because once it is a neighborhood, this  can be replaced by a subset, which is open that is

all.

The third condition is: given a closed set  inside  and a point  in outside of (similar to

the conditions in (i), there exist open sets  and  in  such that  is in  and  is inside ;

all this is same as number (i), but the last part is here it is only disjoint there, and here 

is empty. 

Look at the third condition is much stronger apparently, but the claim of the theorem is that

all the three are equivalent to each other.
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So, let us prove (i) implies (ii): All that I do is take  equal to  ok.  was open  is closed

 is in . So,  is in now . Now apply (i) to get open sets  and  such that  is inside 

and  is inside  and  and  are disjoint.

Now, take   you want to get something here since   is inside  ,   open   is

empty, it follows that  is empty ok, actually  is empty whatever this implies  is

contained inside  and  is . So, this means  is empty ok.

(ii) implies (iii): Take , we get  in the inside , containing  contained inside , by

applying property (ii), where  is an open set ok. Now applying (ii) for  belonging to ,

 bar is closed and so,  is open right? And  is inside that. So, what we get? We obtain an

open set   such that   belongs to   contained in   contained in   ok? These   are

different from .

Now, take  equal to union of all these 's, where  belongs to . That   is an open set

containing . Clearly  is empty for all  and so,  will be empty. So,  is

empty, hence  is inside , the closure of . Applying (ii) again we get an open set  such

that  is in  contained inside  contained inside .

Whenever you have an open set ok then  belongs to  contained inside , there is such a

thing. So,  is closed complement will be open. So, you have to apply (ii) at least three times

here. For the last one, for each point here you have applied (ii) here once you have applied

this one here also ok this means that  is empty.

So, the so called stronger condition is obtained ok. And (iii) implies (i) is obvious. 

So, condition (i)  is taken as the definition usually, though (ii) and (iii) are equivalent you can

use whichever one you like. Because (i) is the easiest to verify when you want to test whether

a given topological space is regular or not you want to test the simplest thing, the easiest

thing.



So, for that matter I will also take (i) as a definition namely given a closed set and a point

outside it,  there are disjoint open subsets containing them:   and   respectively, which is

similar to Hausdorffness, only thing is instead of  , I have a closed set   ok? There is no

condition on  could be any point not in , that is all ok?
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Any space which satisfies any of the three conditions above and hence,  all the conditions

above in this theorem that will be called a regular space alright?
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Now, I will  introduce the normality. The following conditions on a topological  space are

equivalent.  Again there are three  of  them almost  parallel  to (i),  (ii),  (iii)  of  the previous

theorem, but the difference is now that given disjoint closed subsets   and  , there exist

disjoint open sets ,  such that  is contained inside  and  is contained inside .

So, you know immediately the difference: instead of a point at a closed set I have taken two

different closed subsets disjoint closed subsets. So, that is the difference ok? Then (ii) and

(iii) imitate, just like conditions (ii) and (iii) of the previous theorem. Given  inside  where

 is  closed  and   is  open,  there  exists  an  open set   in  between  them such  that   is

contained inside  contained inside  contained inside , ok? So, this is the condition (ii). 

Given disjoint closed sets   and  , there exists open sets   and  , such that  's are

contained inside 's and  is empty. So, this is similar to property (iii) in the previous

definition. Again the proofs are also similar. So, let us go through the proofs again that these

three conditions are equivalent.
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So, how to get (i) implies (ii)? Take   as  and  as . You are given  closed and  

open are given,   is contained inside  , right? Take   that will be a closed subset

disjoint from . Apply (i) to get  and , ok? Then take  equal to . Now , which is

the complement of   is   and it  is  contained inside  . This  implies   is  empty.

Therefore,  which is  is contained inside , ok? So, that is (i) implies (ii). 

Similarly (ii)  implies (iii), this proof is similar. First obtain an open set   such that   is

inside  contained inside  contained inside .  is open and  disjoint means  is

contained inside .

So, in between I can put  an open set , lets say, such that  is contained  contained inside

. Apply (ii) again ok? To this situation namely with ,  contained inside . In between

these two, you can put one more open set, we get an open set  such that  contained inside

 contained inside  contained inside .

Now, you take the complement of .  is closed. So, the complement will be open that as

. Then this  will be contained inside , ok? See here this is contained inside . So, when

you take the complement this will be contained inside the complement of that. That is all.

And it is easily verified that  is empty ok.



So, proofs are identical to the proofs for the regularity that is why I have put them together in

one single place. 

(iii) implies (i) is obvious. Because (iii) is a stronger condition right? Go back here, disjoint

closed subsets are contained in disjoint open sets.  itself is empty implies  is

also empty and that is all we need in (i). So, (iii) implies (i) is obvious alright.
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Now what to do with this regularity and normality ok? So, what is normality anything any

topological space, which satisfies (i), (ii),  (iii) of the above theorem any one of them and

hence all of them ok? Normally you can take the first one as a definition, but in application

you can use any one of them.
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Proof that (ii) implies (iii) in this theorem is much easier than the proof for the corresponding

part of previous theorem, because you have to do things point by point and so on and then

take the union and so on. So, for normality it was easier actually.  

Also observe that normality is apparently stronger than regularity, `apparently' why? Because

point and closed sets are separated in regularity. Here any two closed sets are separated, but

you have to be careful both  and  must be closed here whereas, there  could be any point

and the other one is closed so; obviously, we do not have the hypothesis that singleton sets

are closed ok? We do not have that therefore, normality may not give you regularity ok?

So, we perceive a major difficulty in deriving regularity from normality.  The problem is

precisely  that  singleton  sets  need  not  be  closed  sets.  Indeed  under  this  extra  hypothesis

namely, singletons are closed which is that  is Frechet right? If all the singletons are closed

that is called a Frechet space, so, if you have Frechetness, then it is easily seen that normality

implies regularity. There can be other hypothesis also under which this may hold.

But under Frechet, we know that normality implies regularity ok? Regularity of course, may

not imply normality that is too much to expect, but if you say it is not then you have produce



a counter example. That is the only way. So, you have to give a counter example. Counter

examples are not all that easy alright. So, we will work on that. One those things now ok?
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In the absence of Frechetness, we shall later see that normality need not imply regularity.

Which just means that we have to give a counter example. Of course, it is easily perceived

that regularity need not imply normality even under Frechet condition. It may not. We shall

see such an example later.
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Same problem is there if you try to derive Hausdorffness from regularity. Because it looks

like I started with the comment that regularity is a kind of generalization of Hausdorffness

right? Any two points are separated by open sets, that is Hausdorffness. Here point and a

closed set  are  separated,  right? So,  why cannot  we separate  two points?  Once again the

second point may not be a closed set right?

So, second point is arbitrary. So, all points must be closed in oreder to apply regularity to get

Hausdorffness.  That  means,  Frechetness  again.  If  you  have  Frechetness,  regularity

automatically  gives  Hausdorffness.  Now  you  see  the  importance  of  Frechetness.  Under

Frechetness,  regularity  implies  normality,  normality  implies  regularity  and  normal  and

Hausdorffness  also  and  so  on  ok.  I  repeat,  under  Frecheness,  Regularity  implies

Hausdorffness, and normality implies regularity. Therefore, it will imply Hausdorffness also.

So, that may be one of the reasons why Frechet, even in his definition of topology itself put

that condition ok. 



(Refer Slide Time: 18:07)

Now, let us work out these things, our habit of checking whether a property is hereditary co-

hereditary and so on. Frechetness, Hausdorffness and regularity are all seen to be hereditary.

Hereditary means what? Take a subspace it should have same property. ok? So, let us look

regularity. Take a subspace and take a point and a closed set. A closed set in the subspace is

what? What is the closed subset in the subspace? It is some closed subset in the larger one

intersected with the original subspace. The point is already in the subspace and not inside the

smaller set.

So, it is not in the larger one also. Therefore, you can apply the regularity of the larger space

to conclude that there are disjoint open subsets as needed. Now we intersect them with the

subspace. So, that will give you disjoint open subsets containing the point and the closed set

ok.

So, that was the hardest one. Hausdorffness and Frechetness you can do it easily ok. So,

every subspace of a regular space is a regular space; however, you try to do the same thing

for normality you will have problems, why? Because starting with two closed subsets inside

the subspace, there are closed subsets in the larger one. The problem is they may not be

disjoint. 



You start with disjoint closed subsets in the subspace. That means what? There are closed

subsets in the larger one when you intersect with the subspace, they will give you the original

sets, which are disjoint. But why these larger ones,  new ones inside the larger space, should

be disjoint?  Nobody guarantees you that. In fact, that can happen and that way the normality

may break down. It may go may not go down to the subspace ok?

In fact,  it  happens that normality is  not  hereditary.  So, again we have to construct  some

example for  that  ok? A counter  example ok?  On the other  hand,  where  are  these things

coming from you know, metric spaces. A metric space is Frechet,  Hausdorff,  regular and

normal as well. Very easy to prove.

In fact,  every subspace of metric space is a metric space.  Therefore,  every subspace of a

metric space is also normal whereas,  in general,  subspace of a normal space may not be

normal. So, that makes us think about what is going wrong? So, we have to take a fresh look

at the metric spaces itself ok? 
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So, let us take a look at metric spaces, namely subspaces are also normal why ok? So, that is

the aspect. Two subsets  and  of a topological space are said to be mutually separated if

 is empty and  is empty.



So, this is slightly you know, a generalized concept of two closed subsets being disjoint. If 

and  are closed subsets then saying they are separated is the same thing as they are disjoint

that is all. Because  and  right? So, there is nothing more than that ok? Instead

of taking closed subsets, start with any two subsets. Saying they are disjoint is weaker than

saying that they are separated. You see  may be empty, but  may not be empty.

So, this is a stronger condition on arbitrary subsets, than saying that they are just disjoint ok.

So, this definition is made in the light of the third condition in normality you will see why

now you see.
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A typical example of mutually separated subsets is:  and , if you take 

and  , they are not disjoint. They will have common point viz.,  . Also,   and   are not

closed. 

But   and   are mutually separated,  why?   and   is  not  there in  .  Similarly,

 and   is not here in  . So, they are mutually separated ok? So, this is a typical

example inside . You can construct many many such examples. Now, what is that good for?

Let us see now. 
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On a  topological  space  ,  the  following  conditions  are  equivalent.  Given  two  mutually

separated subsets   and   of  , there exist disjoint open subsets such that   is contained

inside  and  is contained inside .

Now,  you  see  this  is  definitely  a  stronger  condition  than  normality  why?  Because  in

normality I started with the  and  are closed subsets, right? Then automatically they are

mutually separated, this condition is satisfied. But if you start with arbitrary subsets  and 

which are mutually separated, they may not be disjoint, they may not be closed and so you

cannot  apply normality to  get  disjoint  open sets   such that   contained inside  ,  

contained  inside  .  So,  this  statement  is  definitely  stronger  than  normality.  It  implies

normality I have shown you. because if start with  and  are closed they are automatically

disjoint. So, you will get this one. So, condition (i) is stronger than normality.

But this theorem says condition (i)  is equivalent  to every subspace of   is  normal,   is

normal is fine. That is that  (i) implies normality.

But more than that. Condition (ii) is obviously stronger. What it says every subspace of  is

normal ok. So, let us prove this one. Every subspace of  is normal then you have to show

this one also ok. So, both ways we have work to do here. 



So, let  be a subspace of  and  be disjoint closed subsets of . Then I have to produce

disjoint open subsets of  containing  and  respectively. that is my aim ok?

Now, what happens?  and  are disjoint closed subsets, closed inside  not inside . So,

 is  , because   is a subset of  . So, you can rewrite it as  ,

you know, by associativity of the intersection. Now what is ? Can you tell me what is

this? All closure points of  which are already inside .

Therefore they will be inside the closure points of   inside  . Therefore,  they are in the

closure of  inside , but  is closed inside . So, it is . So, this  and  is empty

is the starting hypothesis,   and  are disjoint closed sets ok. Similarly   will be also

empty, exactly similarly.
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Therefore when you pass on to the larger space they will be separated ok. Therefore I can

apply (i) to get disjoint open sets  and  in , such that  is inside  and  inside . Now

you take intersection with , we are through alright.
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Now let us proof the converse. Let  and  be mutually separated subsets of . Put  equal

to  and the complement of that.

Remember,  may not be empty if its empty you are in a good shape. There is nothing to

bother about. So, it may not be empty but  is empty,  is empty. 

So, look at  equal to the complement of . So, that is the subspace. Then  and

 are closed subsets in . After all,  is closed inside  itself. So, intersection with 

will be closed inside , ok? And they are disjoint, because  intersection with  is

equal  to  ,  but   is  just  the complement of this  one right? They are  disjoint

because our choice of . There is nothing more than that. By the normality of , this is the

hypothesis, that every subspace is normal, there are open sets  and  inside , such that this

 is inside  is inside , ok? But what is , this is a closed set. 

So, its complement is an open set, that is our   and  are open inside , they will be open

inside  also. So, you do not have to fatten them. The same  and  will be open inside 

also right therefore,  and  are open inside  also  contains inside  contains inside .

So, we were arrived at number (i) alright.



So, the proof was not at all difficult, but you have to think of, you know, this clever step here.

Instead of arguing with some points here points there etc., and get confused ok. So, you have

to think about this what subspace should I take. So, apply to the right subspace you get the

answer very easily. 
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Following this theorem we can now make a formal definition. We have observed that this

condition is stronger than normality.

So, we just call it completely normal space. A space that satisfies one of the conditions and

hence both the conditions of the above theorem is called a completely normal space ok? 

So, we shall now return to the study of normal spaces. Maybe it is time now. So, let us stop

here and take up the normal spaces next time rigorously.

Thank you.


