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Welcome to  module  50  of  Point  Set  Topology,  part  1.  So,  let  us  continue  the  study  of

Haudorffness along with compactness and so on. Last time we gave some applications to

function analysis, normed linear spaces, in particular. We showed that every normed linear

space in which the unit sphere is compact is finite dimensional.

Of course, we did many other things, like we showed that the entire of , no matter which

norm you take is a cone over the unit sphere. When you change a norm the units will change

but the cone over the unit sphere is always homeomorphic to the underlying linear space .

So, this what we have seen. 

So,  let  us  continue  that  as  a  consequence  of  the  discussions  last  time  we  also  get  the

following theorem. Let   and   denote the unit sphere and the unit disc respectively with

respect to any norm on . Remember if the norm you have taken is  norm then I have a



different  notation,  I  have special  notations  for  the sphere and  the disc.  This  is  a  general

notation when the norm on  is arbitrary.

 and  are respectively homeomorphic to standard Euclidean sphere and the standard disc

ok. So, this is a consequence of the description last time.
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However, let us just go through the proof carefully, and see what exactly is involved in it ok?

Fix any arbitrary norm on .

We know that it is continuous and non vanishing on the standard unit sphere . A norm is

a function into  , right?   actually.  Restricted to  , we already established that it  is

continuous. Now, what I mean by continuous? Now, I am taking the standard  norm on .

With respect to that this function which is a norm on  is always continuous. This what we

have seen.

In particular, since on the sphere it is non vanishing also, therefore,  is also continuous

ok. So, it follows that, if I put , then this  is from  to  is continuous. You

see, here you have to be careful, on the codomain we have the new norm and on the domain

we have standard norm ok.



So,  norm is  does not mean that this norm is . So, I have to divide by this so that I get a

function into this  here ok? So,  going to  is continuous,  is continuous, the product

would be continuous ok? Likewise, we take  . So, the role will be reversed

now, domain and co-domain, then  will be a continuous from  to . Why?  What is easy

to verify is that  and  are inverses of each other ok?
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Therefore, each of them is what a homeomorphism, one is the inverse of the other. Once that

is the case you can take the cone  which is . It is homeomorphic to the cone , ok?

This is , here this will be the disc  here.

So, this also you have seen last time ok? The first one is  and hence is , the second

 is the unit disc with respect to the new norm. So, once two spaces are homomorphic, the

cones over them are also homeomorphic is one of the theorem that we saw last time.
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So, now let me take genuine example here, which you may all be interested in. Maybe I may

have to stop this presentation and then do something. 
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I wanted to show you a piece of string, can you see that? What does it represent? I mean how

do you represent this by a mathematical object?



So, you can either say that this is a closed interval when you include the end points of the

string or an open interval or a half open interval. There is no other way to represent a half

open interval or open interval  or closed interval all of them are represented by a piece of

string. I have to tell you what it is, ok.
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So,  you can say it is the interval . When you identify just  with  and nothing else what

do you get? You will get some object like this, which is a model for   ok? Actually the

mathematical  object   is  the  model,  and  this  physical  thing  is  my  hand  is  the  object

whatever.  It  does  not  matter  whether  it  is  like  this  or  like  this  and  so  on  up  to

homeomorphism this .

So, all this a layman will understand that this is a circle. Now, mathematically we want to

rigorously say that identifying the end points of  and  gives you , right. So, that is what I

want to rigorously prove now. That was my main interest yeah you know ok?

So, let me go back to the slides now ok. So, so let us do this business, namely, let us prove

that the quotient of the closed interval  by the identification namely the end points  and 

are identified is actually , ok?
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So, I will denote by , ok? I do not have to take any other closed interval because

they are all homeomorphic to . Any closed interval is homeomorphic  that we know

already.

So,  define a relation in  is related to  is related to  is related to  for every .

So, this is an equivalence relation ok? There is no other rule here ok. Now, let  from  to

 be the quotient map, this  which has the quotient topology, we want to show that is

homeomorphic to . Our task is to show that it is homeomorphic to the unit circle, ok.

To get a homeomorphism you observe that whenever you have a quotient space of a space ,

what you do is you construct the function on  itself, on the mother space  itself ok? But

now what we observe is  is compact therefore,  is compact and  is Hausdorff. Then

one of the theorem that we have tells you that if you have a continuous bijection, then it will

be automatically a homeomorphism.
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So, that is what we are going to expect here ok. But now to construct a function from  to

, we appeal to this lemma which we proved long back. So, what was it? 
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When you have a quotient map   to   ok? given any function   from   to  , there is a

unique function  from  to  such that  if and only if this happens ok?



Namely,  whenever  two  points  are  identified  by  ,  the  same  thing  should  happen  to  the

function  that you are interested in. That function   should also identify those two points,

this is the condition. Of course, now our notations are slightly different.   to   is the

same, that is . I want to get a homeomorphism here ok. To get a map here, I should have a

map  here first of all such that , whenever . Here this implies either 

is  and  is  or  is  and  is , that is the unorderd pair is the same ok.

Why I have put this one? Because finally, I do not want any more identifications here, I want

this one to be injective ok. I want first of all this function, so it must send  and  to the same

point  here.  So,   must  have  that  property.   must  be  ,  ok.  Otherwise  you  know,

otherwise there is no identifications by which I mean if  , then   will be not

equal to . So, such a map is readily available to us. You do not have to work hard for this.

Take , restricted to . If  is  or  equal to , it is the unit of  and everywhere

inside the  interval,  it  is  injective.  So,  when you come down here,  you get  a  continuous

function which is injective, but g is already surjective therefore  is also surjective. So, this 

becomes a homeomorphism because  is compact,  is compact and  is Hausdorff.
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Let us go to some other example now, namely, the projective space . We have not studied

this one much, but we have we are familiar with its definition. However, I will recall the

definition. 

So, projective space , the real projective space it is called; there is a complex version also

as you may anticipate. It is defined as a quotient of the space of non zero vectors in  by

the diagonal action of , namely  goes to . So, it

is  also scalar multiplication you may say diagonal action or scalar multiplication ok? We

have then claimed that this quotient map when you restricted to , is also a quotient map.

That time it was an exercise for you. Now, this claim easily follows from our earlier theorem.

Why? Because,  is compact ok; and what we have shown is that quotient map is a closed

map ok. So, this restriction will be also a quotient map now from  to . It is easily seen

that it is surjective, surjective continuous map. But now because  is compact the function

will be a closed map.

Every  closed  subset  if  a  compact  space  is  compact  and  the  image  of  a  compact  set  is

compact, and compact subset of a Hausdorff space is closed. So, that was the theorem ok. So,

you can use that here. It follows that   to  is also a quotient map. Of course, it is not a

bijection. So, it is not a homeomorphism. Here, antipodal points  and  are mapped to the

same point ok?

This quotient is easier to understand, namely it is under the antipodal action,  goes to .

Both of them go to same point under , ok? So, in particular, why I took this example? Now,

it will follow that  is compact ok? We could not say that  is compact earlier. 

The only thing we have to bodily verify is that  is Hausdorff, which is not very difficult to

verify. The entire exercise here you do not have to worry, you have to just show that   is

Hausdorff, that much you have to verify. Then only this theorem can be applied ok?
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So,  now  I  would  like  to  play  a  different  game  here.  Recall  that  we  have  defined  an

embedding long long back maybe, of a topological space  into another space . What is the

meaning of an embedding? It means a continuous injective map such that, when you restrict 

from  to , not the whole space  this is a homeomorphism, where  is given the

subspace topology from . So, that was the definition ok? Beyond the definition we have not

done much.
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Now, at least we will have some examples here. So, now, I specialize to the case wherein

. So, look at the projective space   of dimension   which is  quotient  of   by the

antipodal action ok. What I want to do is, I want to explicitly write down an embedding of ,

inside , sorry embedding of  inside .

 is embedding in ,  is a subspace of  right by definition. But now , I would like to

embed inside ; why? Because for some reason I am not able to embed it inside .

Actually, a deeper theorem in algebraic  topology will  tell  you that you cannot embed  

inside , ok? Notions such as orientability etc have to be studied to understand that result

ok? So, to get such a function, what I should do? I should construct a function from  to 

such that , if and only if .

Then I will get a map  from  to , ok. Indeed, this is if and only if. When you come here

it  will  be  already  injective  mapping.  If  ,  if  and  only  if  ,  then  the

corresponding function  from  to  will be injective. Once again this is compact that is

Hausdorff.



So,  from  to , that will be a homeomorphism which means  is an embedding. The

task is to find a function  from  to , which has this property: points are mapped to the

same point only if they are antipodal, otherwise they are mapped to distinct points. This is

what I have to do ok? 
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So, hunting around various examples, it turns out to be a pleasant surprise that we can do it

with a quadratic embedding. Namely, you know, whenever you have  going to same point.

So, the natural thing is to look for quadratic functions   and so on,

tand their combinations.

So, they will  have this  property  right? Homogeneous quadratics.  And a hunt  like that  is

actually giving you the result. So, naturally you can try this out.  are three coordinates

here. Remember,  I am only interested inside   ok; not the whole of  . This will make

sense in the whole of  no problem because we have polynomial functions. 

Look at  and . Obviously, three easiest function. Of course, I could have taken 

and  ,  but  there  will  be  a  problem.  If  I  take  ,  would  it  work?  But  then  even

 also does not seem to work but I am allowed to take one more coordinate function,

namely I pick , ok?



After that it is a matter of checking that when you pass down to  that the map is injective.

Obviously, if you replace each   with   on the left side,  the right side

remains unchanged ok? Do not just change  to , that is not the action, that is not required.

When you change it is . So, that is the antipodal point of . That will also

represent same point in . Therefore, this will give you a function  from  to .

Now, you have to see that this function is injective that is all ok? So, that part I am going to

leave you as a pleasant exercise. Verify it ok? 
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I will go to another interesting example. Once again, this is also something like , a non-

orientable  surface.   was  one  such.  This  also  cannot  be  embedded  in  .  But  similar

approach to that we did above seem to work here also and we will get an embedding in ,

ok?

So, first of all I have to explain what is this Klein bottle   ok? It is the quotient, a double

quotient, under   mapping (just like  ) of the torus  , ok? What is the action?

Action is important here, by the diagonal action ok of the group , ok? So, diagonal

action has to be taken very carefully here:  going to . So, one coordinate you

take inverse, you know multiplicative inverse another coordinative you take additive inverse.



On  the  second  factor  it  is  just  the  antipodal  action.  But  on  the  first  factor,  this  is  the

multiplicative inverse ok?

First  of  all,  let  us  work  out a  geometric  way of  obtaining Klein bottle  out  of  the above

definition. Suppose I take this as the definition ok? This not a standard definition, but now let

us say use the well-known geometric way of getting a Klein bottle out of the torus. The torus

 is defined as the quotient of a rectangle,   wherein the  sides are identified in a

particular way. The   is identified with  . So, that is the opposite side

right?, in the same oriented fashion. Similarly,  will be identified with ,

ok? Again the opposite sides. 
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That is the identification here, this is the square . So, this bottom thing goes to the top

thing here, see the double arrows are indicating that. You see the triple arrow on vertical sides

they are identified, this is the identification.

The arrow tells you how the identifications are done. For example, here an element looks like

. So, where does it go? It will be identified with . Similarly,  will be identified

with  here ok. So, the quotient space under these identification is the torus.



But to get the Klein bottle, I have to do some more identifications. Because on the torus, I

have an action  going to , right? So, that is what I have tried to express here

ok. So, what happens is  if  you look at this  arrow,  the bottom line here,  this will  be get

identified with the middle one dot dot dot dot in the opposite direction. These elements will

be there all the time there is no identification there ok?

But what further identification? what happens is this part will be identified with  that part ok?

This is getting identified this way alright and this getting identified that way. All these points

here they will be identified with corresponding points here, something here will come here

and so on in the opposite direction.

In the interior of half of this rectangle, there will be no identification. Everything above will

be  identify  with  some  point  below.  Therefore,  the  upper  half  part  of  this  rectangle  is

unnecessary. So, I have cut it off and taken the lower half rectangle here of the original one.

Now, the identifications of this one will give you the Klein bottle. So, this is the geometric

way ok, to justify all these things rigorously you have to write down formulae, that is the only

way ok?
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 So,  that  is  what  we have  to  do  ok.  So,  this  is  the  idea diagonal  action   going  to

.

Since,  and  are now representing elements of , but I am representing them on the

plane, only after identification, named  going to , you will get an element of . So, what

is the corresponding identification of this one in terms of real coordinates?
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So,  I  have  to  convert  that  and  that  amounts  to  the following thing:  if  you represent  the

element  by , that means what?  is equal to , ok? Similarly, this  is represented by 

means,  equal to , that is the meaning of this. So,  will be represented by , ok? 

Whereas,   will be represented by  ,ok? This is very easy. You apply  , what

happens,   is just  the inverse of  and the other one is a minus of that. Because

half of  will be . So,  is multiply by , ok. 

So, that is all I have done. And this is first half the bottom half. In the second half,  will

be , because plus half goes away out of that is  . So, I have to take the half

less than equal to ; less than equal to I have to take.



So, these two have the same effect. But the actual  map will be , because I have to be

within a  less than . If  is bigger than half,  will go out of  right. So, that is why I

have  to  write  like  this  one,  the  entire  quotient  map  can  be  restricted  to   equal  to

; you do not need a second part at all, this part. Now, in the interior of , there

are no identifications let us check what are the identifications on the boundary ok?
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So, this is what I have already done. The two vertical sides have to be identified as indicated

by the arrows. The lower horizontal arrow  gets identified with , in

the reverse direction via the map  going to . I have to just understand what is

happening here, when you put  and , ok.

So, this is what happens. Thus the paper model of Klein bottle is given by the rectangle on

the right hand side here, in the picture which I have shown. Paper model means you have to

indicate how you are going to identify the boundaries that is all ok. So, this is the explanation

of how to construct a paper model of Klein bottle alright.
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But now I  go back  to my definition of  the Klein bottle as  a  quotient  of   by the

identification namely  identified with , ok. Once again this time I am denoting

this  etc inside  itself. Because  is embedded in , so,  is embedded in

. From  to m I want to take a map such that, whenever two points are identified they

are going to same point, if and only if. So, that is the same technique as before.

So, what I do take  in . Remember these satisfy the extra conditions:   is

 is  .  That  is  the condition in   for  this  to represent  ,  ok.  Let  it  go to

;  ok? And take its  restriction on  ,  this map is

completely defined on the whole of , but I am only interested in . That means put

 equal to  and  equal to ; that is all.

So, once you put that condition, you can think of  as some 

. Something like that  also you can try ok. Then   action in this notation corresponds to

 goes to  . Now, it is a matter of straight forward verification to

check that  factors down to define a continuous injective map  from  to , ok? By the

similar argument as in the case of . 
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How I got this map? If you look at the term , if you write as

 and  up to here if you put the third coordinate equal to , it gives

you `embedding'  of   in   obtained by rotating  the circle  of  radius   and  centre

 in the  -plane about the  -axis.  So, you use one more coordinate here to get an

embedding  of the quotient, the Klein bottle ok. So, this  corresponds to you know

the center of the circle is shifted to .

See, and this is  . And then this is  . So, you just take instead of   so

that that will help to give you a map of . That is a slight modification there ok yeah. 

So, so we have done something nice today. Let us stop here, next time we will take two more

properties  which  are  very  very  important  again,  the  separation  properties  regularity  and

normality.

Thank you.


