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So welcome to Module 5 of Point Set Topology Course. Last time, we introduced the notion

of  continuity on metric spaces and showed that it is equivalent to sequential continuity.

That was the major result last time. So, today we will use that and see, a number of examples,

basically. So, here I have stated a theorem which is, again, using sequential continuity ok. So,

first of all, you must see what happens to the sequences of vectors, sequences inside , ok.

So,  that  is  the first  theorem here.  Consider   with the  Euclidean metric,  which I  have

denoted by . And I am just recalling it here, instead of  and , I am writing  and ; it

does not matter; that is what you must be able to do, sum  ranges from  to   modulus of

. Then take the square root.

Suppose , now I cannot write this  lower because;   itself is a vector  .

So, I am putting a superscript here. This is sequence in   ok. So, I have changed this  



here, that is why I have put  here; now it is in . So this formula is true for all  after all,

right? So, I cannot fix that one, this , it is better, I use for sequences. So, sequencing ;

where each   is   and so on. So,  there are   of  them;   tuples  of

numbers here, real number, complex numbers whatever, so that is n tuple of it is a vector. So,

it is a sequence of vector, ok.

So, this is a notation. Suppose, this sequence converges to u; under this metric, ok. And that 

, I can write as  , ok, a vector, if and only if, each coordinate function here

 converges to , for all , ok.  up to , ok. So each coordinate function,

converges  to  a  point;  you  take  corresponding  vector  that  will  be  the  limit  of  the  entire

sequence here, this is what it is.

So, just like a sequence of complex numbers converges if and only if, each real part and

imaginary part you get two sequences, both of them converge. So, that has been generalized

here for any  ok.
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So, let us just go through this one and see why. This is just simple   converges to  , ok.

Then what  does it  imply? given   choose a   such that   implies,  distance

between  and  is less than . What is this distance? This is, the square root of the sum of

those squares, ok.

So, that immediately implies that each, each thing here, must be less than  ; because this

square root of this whole thing is less than , the square will be less than . So, each must be

because these are all non negative numbers. Each must be less than . So, square root should

be less than . So, each  must be less than , ok. So, you have finished, the same 

will do the job for all the sequences, ok. 

So, what does it mean?  converges to  means, the each  converges to . So, that is the

meaning. Now, for the converse part, you have to work a little harder. So, that is why I have

put it here. Conversely suppose, each of them converge, the coordinate functions. Given an ,

I should now produce a  such that this happens now, right.

So, what do I do? First of all, what I get is, for each sequence I get a  belonging to  such

that,  will imply  is less than something, and that something I am choosing

not this  , but  . Apply it to the convergence for this number, ok. So, this happens.

Now, you choose  to be the maximum of all these  ok. I have each for each 

have a , take the maximum of . If  is bigger than the maximum, it is bigger than

each .

So, all of them will be true, ok. You take the square, that will be less than  ; take the

summation there are  of them. So, it will be less than , when you take the square root you

will get this one, ok. So, I have, I have not written down that, I have asked you to check this

one. But I have told you, how, how it works, alright.
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So, as a corollary, what we get is, look at the projection maps , the coordinate projection

from  to , ok.

So,  is  coordinate projection; they are continuous. How do we get it is continuous? If 

tends to ,  equals to  tends to . So, that is what we have proved already

because this is a part of corollary here, part of that theorem, you do not have to use if and

only if, just one part. So, coordinate functions are continuous, ok.
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Now, we will improve upon this one. Take a metric space, take a function from  to .

Any function in the product is the same thing as giving you,  functions. An  tuple of, an 

tuple of functions , right. So, look at one function, that is gives you  functions

here. What are they? They are just   which are just  . First apply   and

then take the  coordinate of whatever you get, ok, that is . Each , so, condition is, if and

only if, each coordinate functions, each of them is continuous, ok, all of them are continuous.

So, how do you prove that? Same thing, start with sequential continuity, you see that is easier

than, finding  and so on. Take  tends to  now, put  equal to . Then you

apply that theorem, ok.   will be what? Will be  , alright.  So, you see sequential

continuity  helps  you, once that  is  why we converted  this   stuff  here into sequential

continuity in this one, ok.

So, that was the theorem that we had proved last time. So, we can apply that; a function is

continuous if and only if each coordinate function is continuous.
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As  an  additional  corollary,  let  us  prove  that,  the  addition  in   as  well  as  the  scalar

multiplication are  continuous.  Note  that,  if  you take two vectors,   and  ,  the  

coordinate of  is nothing, but , the  coordinates being added.

Similarly, the scalar multiple  , where   is a vector; its   coordinate is  . Therefore,

from, our theorem 1.20, the statement of this corollary, reduces to the case when , by

taking the coordinates,  ok.  But,  once you put ,  this is  nothing but the theorem 1.20

which we have stated last time. Since we have only stated and not proved it, actually we said

that  you must  have  done  it  in  your  real  analysis  course  and so on.  In  any  case  for  the

completeness, let us prove it now, ok.
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Yeah. Consider the function first, the addition, which I denote by  right.  to , given

by  is . To prove the continuity of , at any point the , given , choose 

equal to . Now, suppose this  is in the ball . Remember what is 

it is all points  such that their Euclidean distance, from  is less than , ok.

In particular,  if  you look at  the modulus  of  ,  it  is  always  less  than the  Euclidean

distance of   from  . Because this is nothing but, the square root of the sum of

 and . So, it will be smaller than individual ones square and then take the

square root. So, this is always true which we have used earlier also.

Similarly,  is also less than , right. Therefore, what you get is, 

will  be  less  than;  what  is  this  one,  this  is  nothing   which  is

. So, modulus will be less than or equal to,  , each of

them is less than . Therefore, the whole thing is less than  which is , ok.

The proof of the multiplication, continuity of multiplication is slightly more complicated, ok.
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So, let us now go through that. So, I want to prove this multiplication, scalar multiplication

on  is continuous at , right. So, given , I want to choose a  appropriately. First of

all, look at  , take the maximum of the two, ok, add , call that number as   is

maximum of  and  plus . Then choose  to be the minimum of  and , ok.

I would like, I want it to be less than . But I also want it to be less than , that is why I

am taking the minimum of the two, ok. Now, suppose,   as usual. Then I

want to show that,  of, sorry,  is less than , that is what I have to show,

ok. So, as before, we have, the moment  is inside this ball,  and  both of

them will be less than .

Moreover, now  implies   itself is less than   and this   is less than  ,

right. So, so this should be less than , ok. So, this is less than .
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So, if you put all these things together, what you get is now,  the modulus

of that is modulus of   we rewrite it as   added and

subtracted.

So,  this  is  ,  ok.  And  that  is  less  than  or  equal  to,

, ok. The  comes out, both for you for both of them here. This is for 

and this is for . So this completes the proof of theorem 1.20 that we had stated earlier and

along  with  that,  the  corollary  1.24  is  also  proved,  ok.  So,  we  have  this  very  important

theorem here, I have generated a corollary that does not matter, ok.
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So, as an example of application of this one, any polynomial map  from  to , what is a

polynomial  map?  Polynomial  is  something  like   where

 are  scalars,  right.  So,  I  want  to  say  that,  any  polynomial  map is  also

continuous; constants are continuous. The first thing I used to use that, apply scalar the, the 

going to  is continuous, identity map.

So, multiply the two of them, that will be continuous; which means  is continuous. Multiply

again, that to   is continuous; that means, all monomial functions   going to  , they are

continuous. So, now, we can add two of them at a time. So,   is continuous   is

continuous. Finitely many of them you have to add, that would be also continuous, ok.
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We can go one step further, namely; any polynomial map in any number of variables, finitely

many  going to summation , . This is the notation if   is , this is

just a constant, there is no choice. If  is , you can take , you can take , you can take 

and, and all monomials of degree  you can take. If degree , then you have  all of them,

not only that, you have .

So, those things will be also there. So, how to write all of them. It is a notation here. Take any

, which is a positive integer look at all multi indexes , which are  they are all

integers, non negative, ok;  tuples of integers because I have  variables here, ok. Sum total

of these, must be less than or equal to  , that is the restriction you are putting because you

want to take only finite sum that is all, ok.

Then, what is the meaning of this ? It is one single notation for, . So, that is

the notation. Summation of all,  that is less than or equal to , I write as , less

than equal to .  is this one this is like, your taxicab metric here, ok. And, all the  they are

inside , they are coefficients; they may be real or complex, more generally any field will do.

But we are concentrating only on real or complex numbers. So, such a polynomial is also

continuous,  why?  Because,  first  of  all,  all  the  's  are  continuous,  this  is  what  we have

proved.  So,   or   and  so,  all  of  them are  continuous;  multiplying  them by



constants they are continuous. Then you have to take the sum. So, instead of one variable,

you have one more namely, here namely all you have to take various  and then take the

product, not just one  and its one powers, ok.

So, that is all the difference. So, here again, the argument is similar, that will give you all

polynomials whether one variable, two variable, n variable they are all continuous functions,

ok. To be sure, you know that they are also differentiable functions, right. In fact, they are

more than that, they are much more than that, they are analytic functions and so on.
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There is one more notion, which we want to recall, once again from, function of one variable,

real variable or complex variable.

The definition is exactly the same again. This time, again, you replace the modulus by the

distance function, that is all. Take a function from one metric space to another metric space.

It is called uniformly continuous, uniform continuity is defined on the entire set , there is no

point in defining at a single point, ok. I can define it on any subset  also, that is possible.

But now here, I am defining it for all . So, it will be true for any subspaces also, ok.



So,  a  uniform continuous  function,  is  defined  for  the  entire  domain  here,  ok.  Whatever

domain you have chosen for the function. What is the definition? For every , you must

have a   such  that,  whenever  the  points  of  our  domain are  close  enough,  say by  ,

,  their  images  must  be  also  satisfy  the  same  relation,  but  with  this  ,

 must be less than .

So, you see, there is no reference to, given  and  there exist  was the definition for ordinary

continuity at a point. In this case, there is no reference to a single point here. This delta will

just depend upon epsilon, it will serve the continuity for all points, at all points. In particular,

uniformly continuous functions are continuous also, in the ordinary sense, that is easy, ok.
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Indeed, I have not said anything other than, replacing the modulus by  and . So, you must

be all familiar with these things, ok. So, for instance, what is the difference between ordinary

continuity and uniform continuity? In both the definitions, this  will depend upon , ok. But,

in the ordinary continuity, it also depends because we start with  for each  and  there is a  

ok. In the uniform continuity there is no starting point at all, you do not have to. It starts with

for every , there exists  , ok. And then the statement is for all points, all pairs of points.

Therefore, uniform continuity implies continuity, there is no problem, ok.
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But we will see some examples here, that, generally,  ordinary continuous function may not

be uniformly continuous. So, the first example is the simplest example, namely , on

the reals. 

You must have checked it, if you have not you should check it right now, alright. Does not

take much time. Not uniformly continuous means what again you have to do? Given , there

exist a  ; that is the condition right, for all   should happen. What is the negation of that?

There is some , is that no matter what  you take, somewhere, something goes wrong. That

point you can choose freely here. That is the point, because there is no for every; given  is

not a starting point or anything, ok.

So, you can take any number,  for example, and then show that there is no such  which will

give you the continuity for all the points. So, that is what you have to show. So, having told

that much, I will leave it to you. The same thing with  is not uniformly continuous, ok.

On the other hand, closely related to them are the so called trigonometry function sine and

cosine, they are uniformly continuous, ok?



I do not want to reveal it. There are tricks to see, why they are uniformly continuous.  I do not

want to reveal that to you right now, you think about them, alright. If you have problems with

this one, you should not hesitate to contact us on the platform namely, the discussion forum

there ok. So, there you can ask, I tried this way, I tried this way, but I am not getting it, please

explain. So, our TAs will explain that.

So, let us look at  another example here, namely tangent and cotangent functions, ok. They

are also not uniformly continuous. So, this time, the domains are of finite domains here, but,

but the co-domains are the whole of minus and plus infinity the entire of , ok. So, entire of

.  If  these  are  actually  homeomorphisms,  some of  the  mappings  here,  but  they  are  not

uniformly continuous, ok.

So, uniform continuity is something, somewhat funny thing it is not a topological quote and

quote topological property at all. So, in topology you would not much see it at all. In general

topology, there is no uniform continuity concept, to bring it you have to do something like a

metric space, not exactly something like metric space. What are they called? They are called

uniform spaces, ok. Because, with them we can talk about uniformly continuous functions.
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So,  you may have many functions which are continuous, but not uniformly continuous, But,

look at the thing here, it seems to have something to do with the domain and co-domain ok.

So,  indeed you  have  also  studied in  your  real  analysis  course,  namely  every  continuous

function on a closed interval is always uniformly continuous, ok.

So, though I have given you these examples of, not uniformly continuous functions, if you

restrict them to any closed interval they will be uniformly continuous. The emphasis here is

this is not uniformly continuous on the whole of . Similarly,  is not continuous on the

whole of  ,  that is the point. If  you restrict  it to closed intervals, they will  be uniformly

continuous that is one of the theorem, that theorem namely a continuous function on a closed

interval is uniformly continuous, that one, we can extend it in some sense and that is, comes

back in topology also, definitely in metric spaces later on we will do that.

(Refer Slide Time: 27:46)

So, here is one example which you might not have seen in your analysis course at all, because

this is  about metric  spaces.  Take a metric space,  take any non-empty subset,  ok. So, the

layman's language of distance, I am going to use that. So, I am going to take arbitrary points

and then talk about the distance of that point to the set, ok. So, that is what  or ,

whatever notation you want to use you can use.



So, this is defined as, infimum of all the distances between  and , where  is fixed,  varies

over , look at all these, these are all non-negative real numbers, ok. Take the infimum. Why

does this infimum make sense, because this is bounded by 0 below. So, infimum may, at

worst be  or it may be some positive number, it makes sense.

This infimum is called the distance of  from , ok?  So that is the notation  or .

This function, you can easily check that it is uniformly continuous, you do not have to hunt

for a  , it is there already. I have given you a hint. So, write down the details yourself, ok.

Any doubts? We will stop here, until next time.

Thank you.


