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Welcome to module 49 of Point Set Topology course part I.  Last time we introduced the

notion of Hausdorff spaces and proved some very important theorems. One of them was a

characterization of homeomorphisms. Characterization means only in some particular cases

that is all. Namely if you have a bijection from a compact space to a Hausdorff space, then it

is a homeomorphism iff it is continuous. 

So, there are other cases also we have to prove. So, let us try to give some illustrations of

usefulness of these concepts and theorems. So, we will go back to  the study of quotient

spaces now. Let  be a topological space and  be any interval of the form  or  and

b could be infinity also, ok.

So, instead of writing  or , I will just write it as  it will represent any one of them.

By a cone  over  ,  we mean the quotient  space  of   by the identification:   is



identified with  , for every   and   inside   and no other identifications. That is the

meaning of when you define a relation by declaring some rule.

The rule is only this one. After that by reflexivity, transitivity, symmetry etc the relation is

completed ok as an equivalence relation. So, in this case you know by reflectivity every point

is related to itself. That you have as part of the definition, though it is not stated specifically.

Symmetry is already there here and transitivity is also obvious. So, only points , they

are identified to a single point, forming a single class here ok.
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So, that is the meaning of this cone over , the quotient space will be denoted by , ok.

The image of   under the quotient map is called the apex of the cone, ok? A single

point representing the entire . So, that will be called apex of the cone. The image of

 for any , see take a point  other than , they remain as they are: there is no

identification. So,   to its image is a homeomorphic copy of  , ok? And it will be

contained inside the cone under the quotient map. It is again a homomorphism and any one of

them may be selected to be called the base of the cone .

Why I am saying `selected to be' because there is no definiteness you could have taken any 

other than . So, any one of them you can say is the base of the cone. In practice especially



when  is a closed interval , we take  ok. We select  as the base. So, there is

a definiteness ok. However, in the case of open cones namely when  open or   is infinity,

then also it is open anyway there is no definiteness.

So, there is also these terminologies open cone and closed cone depending upon whether you

have taken a closed interval here or a half-open interval  corresponds to

open cone. An open cone does not have a unique base. You could have taken any ., they are

all hoemeomorhic to each other. You know they all serve the same purpose, whereas, in the

closed cone you can take the last point here , then  will be the base.

The prototype of a cone is when  itself is a circle. You must have seen all the pictures of

right circular cone and so on. In your twelfth standard you studied the cones also ok, conic

sections and so on. So, the definition is generalized.  Instead of  being a circle you can take

any topological space and do this, ok?
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So, cone construction is one of the very important thing, especially in algebraic topology also

in general topology ok. It has some canonical properties which we shall describe now. What

is the meaning of this canonical property. Suppose you have a function from   to  , any



function. Then you can define  from  to . So, you have defined a cone over a space,

now I am defining the cone over a function here, cone of .

So, what is ?  is a map from  to . First, you define it from  to  to be

 equal to  and then take the classes in both domain and codomain, ok? Here

also you have take the class of  going to the class of . Remember this class is the

same point   unless   is  the first  point   and when it  is  first  point  ,  all  these  

represent the same point, but here also they will represent same point. So, there is no problem

here to in the definition of this function , ok.

The point is if f is continuous, then f cross identify is continuous and hence the induced map

 will be also continuous. Not only that, there are many other properties I want to list them,

 has these properties.  
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If   is continuous, then so is  . If you start with the identity map from  to   of the

identity is identity of . If you have  from  to  and  from  to , then the cone over

 is nothing but cone over  composite cone over .

If  is a homeomorphism then so, is  ok.



So, (i), (ii), (iii) are all easy. (iv) follows from (iii) by taking  from  to  and  equal to 

inverse. If you put  inverse from  to , then  is identity. So, that is identity on this

side also which means  is the inverse of . Therefore,  will be a homeomorphism ok.

So, these things are easy to verify,  there is  no problem about them, ok. These are called

canonical properties.
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Now, I come to some specific examples. Suppose you start with  that is the 0-dimensional

sphere which is just unit vectors inside  namely, . The topology is discrete topology

on that. What will be the cone over that? To be very specific now, I take  equal to the closed

interval , ok. What will be the cone of ?

It is easy to see this. First you take . So, that will consist of two copies of the interval

closed interval  .  . They will be disjoint copies right, but

when you carry out the identification, which one what is the identification? I have to take

 here, right. So,   will be identified with  . Nothing else will be identified.

That means what?



The bottom points of both these are  and , when you hold them vertically, ok? So,

 copy is there and  copy is there. Those  and plus  cross  they will come together.

So, you will get a  shape right? But  shape is homeomorphic to the interval  to , open

or closed interval as the case may be. So, this is the simplest case as such. I have already told

you that if you take  as a cicrle, then the cone over that one will look actually an ice cream

cone or a funnel and so on, ok?

If you flatten it out what you get is a disc, the -dimensional disc. So, that is the point. I will

explain this a little more clearly,  in more general generality, for all .
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So, more generally, put   equal  . So,  . this will be just the circle, but I am now

considering the general case, all of them together.   is over and . Instead of

the closed interval I take [ . Consider the map  from  to  given by  goes

to .

So, this is a unit vector I am multiplying by a scalar the scalar varies from . Clearly this

multiplication map is a continuous surjection. Every point inside  take a vector divided by

its norm that will be unit vector that will be inside . What is the corresponding ? It is

just the norm you multiply it by the norm you get back the vector , ok?



So, this is surjective map ok, it is a bijection if you take nonzero vectors and do not take 

equal to ; that means, on the open interval  is a bijection and where does it go?

What is the image? Image is  ok. So, this is precisely what you call as polar coordinates

in the case of . At , you know  comma any vector  that will represent  into  which

is just .

So, there is that  point is over represented ok. There are too many points which represent that

point, but everywhere else there are unique representations. So,  for all  and

hence   induces a continuous bijection when you pass on to the cone. See whatever   was

taking? Several points, namely , they are all identified in  to a single point.

Therefore,  the  induced  map   from   to  ,  this  is  injective  map  also.  It  is  already

surjective  this   is  surjective.  So,   is  also  surjective.  So,  this  is  a  bijection  ok.  It  is  a

continuous  bijection  by  the  very  definition.  How to  check  continuity  on  quotient  spaces

because  is continuous. So, if you write the quotient map  as  then . 

So, it is continuous means  is continuous ok. So, ,   is is the quotient map that is

what I have got. So, why this   is a homeomorphism, right? If you had this domain were

compact, the codomain is anyway Hausdorff, then you were done, right. In particular instead

of taking infinity here suppose I take a closed interval  whatever  positive ok, then

I would get a homeomorphism, but I will not get the whole of  . What will I get?

Suppose, I take , then I get all vectors of length less than or equal to  which is nothing,

but the disk . If I take  here, I get all vectors of length less than equal to  which is the

closed ball , right. So, our theorem already says that all these balls are cones over what

are the bases there? What is the last thing when when this then the second coordinate is equal

to  that will be the sphere of different radius not .

 you  get  only  when   ok,  I  want  to  say  that  even  this  infinite  cone   is

homeomorphic to the entire , ok. So, there are different ways of seeing this one. The point

is continuity of the inverse has to be established. This part ok. If you throw away the  from

 and the apex from the cone, then we have the inverse of  given by a formula, because

 is unique.



So, how do you get the inverse of ? You see it is just the first coordinate is a unit vector 

divided by , the second coordinate is just . So, both of them are continuous there. I can

divide by  because  is a nonzero vector. But if this is the  vector you cannot do that. So,

there is a doubt when you extend it to  why this is continuous ok sorry this continuity is

ok why the inverse is continuous. That needs to be justified.

So, let us prove that one rigorously once for all so that you would not have any doubt left in

your mind. 
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So, we claim that  is a homeomorphism. For this we need to check  is an open mapping (or

a closed mapping) ok? Let  be an open subset of  ok. Put  equal to . See I start

with a subset  here,  but  then I go to  , via   inverse of that set.  I  am coming to

 ok?  here I am coming ok that is my  equal to .

We make two cases. Suppose, the apex point  is not in . That just means that  is

completely contained inside  and  from  to  is a homeomorphism. This case is

very  easy.  This  we  have  already  analyzed.  Since   to  ,   is  a

homeomorphism  is open ok and in this case  same thing as  ok.



(Refer Slide Time: 19:24)

So, this part is ok. Second case is the important case; namely, suppose the apex point is inside

. 
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The singleton  is a closed subset of , ok. Why? Because the rest of them is open

that is easy to see or inverse image of  under the projection map is just  the entire

set; something is open something is closed. So,  cross singleton is closed in . 

Now, it suffice to show that  is a neighborhood of  in . Under  the apex is mapped

to , right? So, rest of them is no problem. So,  why it is a neighborhood of  in ? We now

use the compactness of  which is equal to  and Wallace theorem to get an  positive

such that this  is equal to  is contained inside .

See you have  which is compact cross  you have ok. So, this  is your  and then

use Wallace theorem. If you have an open subset cross some ,  you have this neighborhood

 of X cross 0 then you have a neighbourhood of 0 in [0, infinity ) which is nothing but [0,

epsilon) so that  is contained inside .  contained inside , for some .

So, this is the Wallace theorem applied to , ok? Under  the image of  is nothing,

but the open ball . This is a unit vector I am multiplying it by some number between 

and . So, it will give you a vector of length less than or equal to less than .

All vectors less than  are inside this one. So, this is an open ball, the image of . This one is

an open ball contained in , which is clearly equal to  ok. So, once it is inside  of

that one will contained inside  which is . So, starting with an open subset  inside 

we  have  shown  that   of  that   is  open  ok.  So,  open  bijective  continuous  map  is  a

homeomorphism so.

Student: Sir.

I am making this remark which I have already told you. Yeah?

Student: Would you please explain it again how Wallace theorem is applied there.

Wallace theorem! You have to remember what is Wallace theorem. If you have a topological

space  which is compact and any other space  ok then you look at  inside .



Suppose it is contained in some open subset ,  contained inside , ok? Then there

is a neighborhood of this  ok one single neighborhood of  this  such that  is

contained inside .

Student: Yeah. So, here that neighborhood is  to ?

. Because  is  here. This space  here I am taking it to be . So, how do you

get a neighborhood whatever neighborhood of   you take, it will contain will contain ,

ok.

Student: Yes, sir.

So, I  have  already told you that when  ,  this is  the popular  representation of   or

complex numbers in polar coordinates: take any unit vector in the complex numbers, you can

write it as . But if you are working in  and so on you cannot write that way you

just write your unit vector.

So, then this is also polar coordinates inside . Every nonzero vector is uniquely written as

what? , where  is a unit vector what is this ? This  is nothing, but . What is t?

It is norm of . as soon as the vector , you have to take , but  could be anything.

So, that much of ambiguity is there in polar coordinates, but if you think of this as a cone

there is no ambiguity.
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So, now, I want to do one more serious thing here. The above discussion is valid verbatim in

any finite dimensional normed linear space  . So, we are doing it in  , but the

same thing holds for every normed linear space which is finite dimensional, where we replace

 by the unit sphere in  with respect to the norm.

If the norm is  norm, you will get the standard sphere. If it is  what you get? You get a

diamond shape? If it is  , you get a square and so on, right. So, all these things we have

seen. Even if it is any arbitray norm, not necessarily,  one of these 's, this statement is true

is  what  I  am claiming.  What  is  the  missing part?  The only missing part  is  that  perhaps

compactness of   is what? The unit sphere.  Why   is compact? Because   is finite

dimensional we want to say that  is compact.

So, you might have already seen this one, but I will complete this one this argument. First of

all recall that by elementary linear algebra it follows that any finite dimensional linear space

is isomorphic to some  , where   is the dimension. Also we have proved that  any two

norms on  are similar ok? Similarity preserves buondedness and closedness.

Therefore, this norm whatever norm, I do not know its form,  the unit sphere with respect to

this norm is closed and bounded subset with the  norm also, alright. In the  norm, a closed



and bounded subset, by Heine Borel theorem, is compact. So, there is nothing missing there.

An apparently missing information, but on a second thought everything is available.

Therefore, what we have is that whatever  analysis we did, namely  of  is homeomorphic

to the whole of  that is valid inside any finite dimensional normed linear space. 

Now, we come to the converse of this one, namely, if the sphere is compact in a normed

linear space  ok, then what? Then  itself is finite dimensional.

So, that is the next theorem that we are going to prove. This is a standard result in function

analysis ok.
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So, let us prove this one as an application of whatever we have done so far. A normed linear

space  is finite dimensional if and only if the unit sphere in it is compact. So, let us

denote by   the unit sphere. Suppose, it is compact, then you can take balls of radius half

around each point that will be an open cover. So, that should admit a finite cover.

So, there will be finitely many points  inside  such that  is contained inside

union of all the balls of radius half centered at  where  ranging from  to . I have got some



points inside a vector space  . So, I can take the linear span of them, right. Let   be the

linear span of . So, this is a linear subspace of . We want to claim that  is

equal to .

If we prove this one, then it follows that  is finite dimensional dimension may be equal to 

or less because these may not be independent. So, why  is equal to ? So, the proof here is

a very important the step, I would not have much time to spend on that one, but in functional

analysis they do much more elaborately about first order quadratic approximations and so on.

So, all those things will be easy for you once you learn what is going on here.
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Namely, suppose you have a proper subspace, (this part itself is an independent result now).

Suppose  is not equal to  that is  is a proper subspace ok? Say  is in the complement of

. I want to find the nearest point to  inside . So, that is the approximation, nearest point

ok. So, I do not want to elaborate that one.

So, what we want to do is  being a finite dimensional subspace ok? It is a complete and a

closed subspace of  . This part we have seen ok? Every finite dimensional normed linear

space is complete and once it is complete it will be automatically closed subspace of , ok. 



So, consider the distance function given by the same norm nothing else,  from  to  given

by . Here  is fixed. So, this is a continuous function it is just equal to norm of

, ok? Take  to be the infimum of all these ’s where  ranges over , ok. So, why

infimum is makes sense? First of all see the distance to some point is already finite. So, that is

fine right. So, all they are all bounded fine so, this non-empty and so on. Also, the distance

function is always bounded below by . So, infimum makes sense. 

Why infimum is positive? If  the distance  is  ,  ok then we know that   will  be inside  

because  is closed. So, distance must be positive ok. So, this  which is infimum of  is

actually the distance of  from  ok? I have just recalled this one here.

So, that is positive because  is closed and  is outside . So, then there exists a sequence

 inside  ok such that distance between  and  converges to . What is ?  is infimum.

by the definition of infimum you must have points here converging to that point, right. So,

those points are nothing, but  they are real numbers  converging to  ok.

It follows that  is a Cauchy sequence. See  converges these are real numbers, but

this implies   is a Cauchy sequence ok, but  ’s are inside   which is complete. So,

 converges to some  belonging to . This  is the point which realizes this distance. 

It follows that  is equal to . The limit will be =  ok. When you take the limit

 converges to . 

So, infimum is actually minimum and it is attained, alright? So, in fact, now you see that this

 as such may not be unique in general, but in this case because  is a linear space it happens

to be unique also, but we are not interested in that part right now.  

So, we have got a point such that  equal to , which is the infimum.
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So, here the picture. So, what I have taken? This is , I am assuming that it is smaller than the

whole space . It is not the whole space, this is the origin ok. This is some ball of maybe

positive radius whatever, alright. This is my  and on , I have located .

So, these are  converging to  ok, it turns out to be if you know what is the

meaning of perpendicular and so on it happens to be like that, but this happens only in an

inner product space. If you have just a normed linear space you do not have the notion of

angle. So, there is nothing like perpendicular and so on.

So, you do not have to draw these pictures perpendicularly and so on ok to be very precise,

but what you can do is you look at  that is a nonzero vector, right? You divide by it is

norm that will be a point here on the unit sphere ok. So, this  is nothing, but  divided

by its norm ok? So, that will be a point of unit sphere. So, this is what I am doing here ok in

the next slide.
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Put  equal to  divided by its norm, then norm of  is . Therefore,  is one in one of the

's  right? it  must  be in  one of the  ,  because the entire  of  the sphere   is

covered by these balls for some  equal to  to up to . Also for any , we have norm of

 you can rewrite it as  is  divided by norm of , right?

So, here is , but I am pulling out the denominator outside ok. Then I have to multiply

by that number  times , but now  minus this one is a linear combination of  and 

as well as  are inside . So, this whole thing is inside  right?  plus this thing. So, that

is an element of . Therefore, this norm minus this one must be bigger than or equal to .

And, then divide by this, this denominator is there,  divided by norm of , ok. So, that

is equal to   because   is nothing but the norm of this is equal to norm of  (distance

between   and  ), ok. So, what we have shown is that for every point  , the distance

between  and  is bigger than equal to . Now, that is the absurd because all these ’s are

inside , right?

We have chosen those things inside . So, that is the problem. So, that is why this picture is

funny because it is absurd picture. So, this one of these balls should contain , but they are all



of half radius, but this is this  is away from all of them ok. So, this is the contradiction. So,

that contradiction because , it is not the whole space.

So, once again this method of minimizing this norm etcetera is important elsewhere, but we

have used it  to prove that compactness  of the unit  sphere implies that  the normed linear

space  is  finite  dimensional,  ok? So,  next  time we will  continue with applications  of  this

nature and more and more examples we will study.

Thank you.


