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Welcome to module 48 of Point Set Topology course, Part 1. So, today we will continue the

study of largeness properties,  one property we have studied, namely Frechet spaces. Now

today it will be Hausdorff Spaces. Once again similar to what we did for Frechet spaces, but

this time only four equivalent conditions. So, I will make a statement on a topological space

X, the following conditions are equivalent.

Given two distinct points  and  there exist open sets  in  such that  is in  is in

 and   is  empty. So, this is also stated like every pair of distinct points can be

separated by open sets. 2nd condition is: for every topological space  and for every pair of

continuous functions  from  to X, the set   belonging to  such that , is a

closed subset of . 



3rd condition: for every topological space  and for every continuous map from  to , the

graph of , which we denote by  is closed in . Remember graph of  is nothing but

the set of points . 

The 4th condition is a very simple condition: the diagonal   inside  

with product topology is closed, that is a closed subset. So, let us go through the equivalence

of these four statements first. 

So, starting with the condition that two distinct points can be separated by open sets, I want to

show that set of all points  such that  is closed, whenever  and  are continuous

functions  from   to  .  That  is  the  same  thing  as  saying  that  set  of  points  where  in

 is an open set alright? 

 and  are points of ,  implies you can apply the previous condition 1,

you  will  find   containing   and   containing  ,  open  subsets  such  that  their

intersection is empty.

If the intersection is empty their inverse images will be also open subsets which are empty,

intersection will be empty, they will be also disjoint. That just means that for any point inside

 and any point inside  will never be equal.  (Refer Slide Time: 04:33)



So, that is how you get that the complement is open ok. So, that is I am repeating it here. put

 equal to all  such that , we want to show that it is open. Take a point  inside

, by condition 1 we get open subsets  and  such that  is in  and  is in  and

 are disjoint. 

 and  are continuous. So, we get open subset   and  in  , both containing

the point ,  because  belongs to  and  belongs to . Therefore, when you take the

intersection,  belong to the intersection also. Then take any point in the intersection, take 

of that it will be inside ,  of that will be inside . So, they are not equal. So, that is a subset

of   ok. These sets may not intersect then what happens? Because I am not taking inverse

image under same map, different maps are there right? But I begin with a point in ,  that

is a common point for both the inverse sets. That is a neighborhood now. That neighborhood

is contained inside , that is the whole idea. 

Second  statement  implies  third  statement:  For  every  topological  space  and  for  every

continuous function  from  to , the graph  contained in  is closed ok. 
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So, this is what we want show. So, recall that a graph is nothing but points  belong

to  , this is a subset of  .  So, let us take   as   itself ok? And consider two



functions  ,  (which  happens  to  be  the  second  projection  here  on  )  and

 ok.  from  to  and  is again from  to  ok.  is

nothing but the second projection followed by .

So, these are my  and  now and  is , both  and  are continuous and we have put

 such that  is equal to . Then what is it? First coordinate is , the second

coordinate the  is  this is , this is second coordinate  here, that is equal to . So,

this coordinate is  means it is in  ok? Points wherein . So, that is a closed

subset of , ok.

See you can directly prove (i) implies (iii), but I want to prove (ii) implies (iii), that is why I

have to do this. Take a special case. (ii) is true for all  and take a special  equal to 

and  and  defined this way. 
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Now, (iii) implies (iv)  I have to show.  is the diagonal, diagonal is nothing but graph of

the identity map . So, apply (iii) to the case where you know  is equal to  and  is

identity the diagonal is closed ok.
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Now, (iv) implies (i), that is also easy. If  is not equal to , we see that  is not on the

diagonal ok. The diagonal is closed means the complement is open. So,  is in the open

subset, in the product topology right? So, there must be basic open sets   and  such that

 belongs  to   contained  inside  the  complement  of  .  That  will  mean  that

 is empty.

This  is  the  same  thing  as  saying  that   is  empty  ok?  What  is  the  meaning  of

 is empty? Take a point here, the same point here you have to take to be inside

, ok. Then only you will get non empty set, something non-empty. If you cannot do that;

that means, any point here cannot be taken as point here, if they are different. And it is this if

and only if actually.

This  set-theoretic  observation  can  be  used in  many other  places  also.  This  is  purely  set

theory, but it is quite useful here ok. 

So, that completes proof of the equivalence of these four conditions. 
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And  we  make  a  definition.  A  space  is  called  Hausdorff,  if  it  satisfies  any  one  of  the

conditions and hence all of the four conditions ok. 

(Refer Slide Time: 10:56)

So, let us make some immediate remarks here. The very first thing is you know that every

metric space is Hausdorff. The topology coming from a metric is always Hausdorff. Because



given two distinct points you can take the distance between them and take half of that and

take the two open ball and they will be disjoint. 

The second example is the co-finite topology on an infinite set is not Hausdorff. Indeed the

co-finite topology has a fantastic property that any two non-empty open sets intersect. Of

course, I have to take infinite set to begin with. On a finite set, cofinite topology is not very

interesting, it is a discrete space that will be Hausdorff of course, ok. As soon as   is an

infinite, a non-empty open set means its complement is finite, and therefore, two non-empty

open sets cannot be disjoint. 

An important property of Hausdorff space is that every sequence in it has at most one limit

point. A sequence may not converge that you know, but if it converges the limit is unique.

So, this was one of the properties which you have been all the time using and you are familiar

with from real  analysis, from metric spaces,  and also real  life ok? So, that  is  one of the

motivations to keep this Hausdorffness property of metric spaces and make it an axiom for

some topological  spaces.  If  not  the metric  let  us  at  least  keep this  property.  That  is  the

motivation. 
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Now, we start mixing up some of these properties. The first thing is: every compact subset of

a Hausdorff space is closed ok. This is a very very good reuslt. Later on we will keep on

mixing compactness and Hausdorffness often. So, this is only a starting point.
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So, how does one prove that? You take a compact subset  of a Hausdorff space , look at

. I want to show that, that is open. So, take a point   in  . to each point inside

, ok, we can get an open subset  and another open set  is a neighborhood of 

and  is a neighborhood of ,  is empty. 

So, this I do for all  then I get an open cover for . This open cover will have a finite

sub  cover  because   is  compact.  So,  let  us  assume  that   is  contained  inside

 union, correspondingly, you take   and intersect

them. Take  . You should watch this game carefully. Here I get a

finite cover there I take a finite intersection of corresponding pen sets. So, this technique will

be used again and again ok. 

So, what is this  good for now?  is open and  belongs to , ok? Why  belongs to ?

Because   is inside each of  , you know   is all the time here ok. The point is now  

intersection   is empty why? Because take a point inside  , it will be in one of the  's.



Then   intersection  corresponding   is  empty,  but  this  is  even  smaller,  this  is   is

contained in the . So,  intersection  is empty ok. So, that is why  is empty; that

means,  this   is contained inside  . So, this we have done for each point of  .

Therefore,  is open, alright.
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So, every compact subset  in a Hausdorff space is closed. We knew this in metric spaces

right? The proof is exactly same except that we should not use open balls; there we are all the

time using metric and open ball and so on.  There also you can use this same proof, because

this proof works in general ok. 

Now,  we  are  in  a  position  to  derive  one  of  the  most  important  results  in  detecting

homeomorphisms. It is quite an application oriented result yeah.

A continuous bijection from a  compact space to a Hausdorff space is a homeomorphism. The

domain must  be compact,  the co-domain must  be Hausdorff.  A continuous bijection is  a

homeomorphism. What is missing? Either you should prove that this map is open map or this

map is closed map ok. So, what we shall prove here is that this map is a closed map. 



Since  there is  a  more general  useful  result,  but  not  so popular  as  this  theorem 4.8,  and

theorem 4.8 is a mere consequence of that one, I will state and prove that one ok? You will

see that while proving that you will get a proof of this one also. 
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So, this is 4.9. Any map  from  to  from a compact space to a Hausdorff space is a closed

map. You see I am not assuming injection, surjection etc. nothing ok? So, this is a more

general result. What does it say? You take any continuous function from compact space to

Hausdorff space; it is also a closed map. Further if it is surjective then it is a quotient map.

This part we have already seen. Every surjective closed map is a quotient map; surjective

open map is a quotient map. All that we have seen ok? The second part we have seen. 

So, this one we want to show why this  is a closed map. Start with a closed subset in , say

 be a closed subset of a compact space . Use remark 3.58 or whatever,  is compact right;

we have proved that one while studying compact spaces. By just proved theorem here, the

partial converse also holds: compact subset of a Hausdorff space is closed ok.

So, what I am going to do? I am going to apply one more  theorem, namely conitnuous image

of a compact set is compact. So,  is what? Is a compact subset of a Hausdorff space. So,

that is end now, by that theorem which you have proved just now, it shows  is closed ok?



So, I repeat. By a result about compact subset, being a closed subset of a compact set  is

compact. By the theorem that continuous functions preserve compactness,  is a compact

subset of  , ok. But from theorem which we have proved just now, since   is Hausdorff,

 itself is closed. 

So, closed set goes to closed set;  is a closed map ok. So, I repeat now, if it is surjective a

closed surjective map is a quotient map. 

If it is bijective, it is a homeomphism. Beacuse then the inverse of  will be continuous. So,

the proofs of both the theorems are over now ok. 
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Here is a remark about mixing compactness and Hausdorffness. Suppose you have some set

and three different topologies on it, one contained in the other, but not equal:   contained

inside  contained inside , ok. So,  is trapped between  and . And equality does

not hold, that is what we have to assume ok? They are distinct. Suppose these are topologies

on   and the middle one is  compact as well  as Hausdorff ok? You have mixed up two

somewhat  opposite  natured  properties--compactness  is  a  smallness  property  and

Hausdorffness is a largest property. So, you mix them. Something wonderful happens which

justifies the names--the largeness and smallness properties.



Then   be compact but not Hausdorff.  Why it is compact? Because it  is smaller than  

which  is  compact.  But  it  will  not  be  Hausdorff,  that  is  the  claim.  Similarly,   will  be

Hausdorff  because it  is  larger  than  ,  but  will  not be compact ok. So, how to see these

things? All that you have to do is start with  and take the identity map ok or inclusion

map whatever you say.

This is the identity because  to  is same set here ok, but topologies are different. Since 

is larger than , the identity map will be continuous.  is compact ok therefore 

is compact. If this were Hausdorff also, then this will be a homeomorphism which means 

is equal to , but  is not equal  by assumption.

Similarly,   to  , you take again the identity map ok, which is continuous. We

know that  is Hausdorff. If it is compact also then by the above theorem the identity

map will be a homeomorphism. But  is not equal to . So, this is not a homeomorphism ok.

So,  fails to be compact. You go above  which is compact Hausdorff, everything above

fails to be compact, everything below fails to be Hausdorff. So, this is like optimizing both of

them, whether such things exist always or not that is a completely different question on a

given set such things may not exist, one does not know. 
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Just like Frechetness, Hausdorffness is a largeness property. So, that is what we have just

seen and a nice illustration  here.  It  is  hereditary,  but  not  co  hereditary  ok,  very easy  to

produce examples. All through we will have such examples a product  is Hausdorff if and

only if each coordinate space is. 

So, in this sense it is a productive property ok. All these proofs are exactly similar to what we

have done for Frechetness and they are straightforward, there is no catch there. Only thing is

you may not be able to see immediately why it is not co-hereditary, exactly similar example.

Same example we will do of collapsing in open interval say  inside  ok. The real line is

Hausdorff, the quotient need not be Hausdorff. So, do not make the mistake that quotients are

Hausdorff ok? Quotients are very fussy. 

Now there are many things to do about Hausdorffness as such.  We are now going to mix it

other properties just like compactness.  Also we may go back to some linear spaces, metric

spaces again and so on. So, at this point let us break. So, that is enough for today.

Thank you.


