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Welcome  to  module  46  of  Point  Set  Topology  Part-1.  Last  time  we stated  and  proved

Tychonoff's theorem. Of course, we assumed Alexander's Subbase Theorem. So, in order to

complete  the  proof  of  Tychonoff's  theorem,  we  should  now prove  Alexander's  Subbase

Theorem. We have already made some set theoretic preparation for that also last time.

So, let us start with the proof of Alexander's Subbase Theorem which I restate here, let  be

a topological space and  be a subspace for its topology.  is compact if and only if every

cover of  by a subfamily of , admits a finite subcover. 
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The necessity of this condition for compactness is  obvious because,   is  compact;  every

open cover has to admit a finite sub cover. After all members of   are open. So, some sub

family of  covers means that is an open cover so; that means, that admits the finite suppose,

that condition is necessary. The crux of the matter is that you have to prove the converse. So,

we expected that this proof will be sufficiently complicated ok, so you have to be ready for

that.

So, fix a subbase  for  ok? And let us have the notation that  is the base generated by ,

namely elements of   are those which are finite intersection of members of  . So, in what

follows I shall use the word cover to mean a cover for   ok. So, that much economy of

notation what I mean, words ok little bit of small words that, what we have is let us let us just

recall, what is the meaning of all whatever we had.
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Every cover  of open subsets means contained in , means  is a sub family of  means

they are open subsets admits a finite subcover,  this is  the compactness right.  The second

statement is every cover  contained inside ; the base. that means what? Only members of

this particular  are allowed, this is a smaller family than tau after all, that admits a finite sub

cover.

Third one is even shorter, every cover  contained in the subbase admits a finite sub cover.

Obviously, (a) implies (b) implies (c), ok? We have also seen that (b) implies (a), ok? Now,

what we want to prove is (c) implies (b). So, this is the gist of Alexander's subbase theorem. 

So, indeed what we shall do is (c) imply the contra positive of (b), namely if  is a subfamily

of  which has no finite subcover, then it is not a cover which is the same thing as saying that

if it is a cover then it has a finite subcover. So, it is in this form I am going to prove (c)

implies (b), ok. So, these all just to clarify the ground situation. 
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Now, the plan of attack is as follow; fix a family contained inside  which admits no finite

sub  cover.  Construct  another  subfamily  another  one  like  this  namely  these  are  all  now

families of families ok,  is all  contained inside  such that,  is inside , this  is one

one such family ok which admits no finite sub cover. 

Finally, we want to show that it is not a cover for  ok. So,  contained inside  and  has

no finite subcover ok. So, look at all those   which also have this property, no finite sub

cover, but they are larger than . So, that is my family of sub families of  here. The first

claim is that using Zorn's lemma, we shall show that under the set theoretic inclusion the

partial ordered set , (this is containment. So, it is a partial order), has at least one maximal

element. 

From one arbitrary , we want to have something which is maximal ok, with respect to this

property, that it has no finite subcover ok. We have to assume there is one , then only this 

will be non-empty I am sure. Then we have the maximal element for that we have to apply

Zorn's  lemma which  means we have  to prove  something there ok,  this  is  a  plan of  that

diagram. 

Second step will be take such a maximal element  in .
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Now, put this  equal to ; that means, those members of  which are in the subbase,

those members of  which are in the sub base, the sub base is fixed ok. So, that is a smaller

family than , right? This does not admit any finite subcover, because  does not admit any

finite subcover.

If this does not admit finite sub cover from the hypotheses in (c) it follows that this subfamily

 is not a cover for   ok. So, up till here we have arrived by using Zorn's lemma and our

assumption that there is a  such that which does not admits the finite subcovers ok.

Now, second claim is: look at the union of all all members of , take the entire set. We will

show that this is contained in the union of members of this . So, what we have concluded for

?  does not does not cover . So, this will also does not cover .

So, that will complete the proof. If this union of all elements in  is contained in the union of

all elements in this   and  does not cover , so  is also not a cover of . If   is not a

cover of , remember  was having a some maximal property, in particular  is contained

inside . So, if   does not cover  ,   also does not cover ok? So, that will complete the

proof.



So, we have to prove two steps here, in the first claim we have to prove the Zorn's lemma

whatever hypotheses is needed that is the first part and then you have to prove this claim ok.

Once we prove this claim, claim II also, the proof will be completed. So, it remains to prove

claim I and claim II. So, let us do it one by one.

Look at claim I: let us just recall ok. This  has a maximal element is what you have to show,

for that what is the ingredient that you have to put inside the Zorn's lemma?
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Take any chain inside , we must show that that chain has an upper bound. This is what I

have to show, this part is very easy as usual, or quite often.

Let  be a chain in , recall what is the meaning of a chain. Chain is a totally ordered subset

of  ,  under the usual inclusion here ok. Consider the family   which is the union of all

members of this chain; obviously, under the inclusion that will be an upper bound for this

one. But do not worry, that must be an element of  then only it will be justified. The larger

set of all subsets it is always an upper bound fine ok.

So, clearly   contains  because each member of this chain they are members of   all the

members of  contain , ok. So, it is a sub family of  also because each member of  is



also sub family of . So, if you take unions of all these members you know, you take each

member inside . So, that is not a problem.

Moreover suppose finitely many members of   say;   cover  , which is the

last part which I have to show that it is inside , that no finite family covers  that is what

you have to show right? If not suppose there are  belonging to , which cover

 remember what was ;  is just union of members of this chain..

So,  will be inside say some  will be  will be  and so on. But these are all

one contained in the other you take the maximum of these, then you have finitely many of

them, you have the maximum. That will contain all  the   ok,  but that  is  a

member of this  so it will not cover; so it is a contradiction ok.

So, I repeat, all these  's are in one single element   of  , but this   is a family which

belongs to  by definition, it has no finite sub cover for . So, this is observed because we

assumed that  admits a finite subcover. So,  does not admit a finite sub cover that qualifies

it to be a member of .

Therefore every chain in  has an upper bound in . Once you have guaranteed this property,

Zorn's lemma tells you that  has a maximal element ok. So, first claim is done ok.
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Second claim: take an element, which is a maximal element for . Any maximal element, fix

that; that you call , clearly  is contained inside .

So, our aim is to show that  does not cover . So, we showed  does not cover . In fact,

what  we will  show is  the  following.  Namely,  the  claim which says,  (this  claim is  even

stronger), than what we need.                       (Refer Slide Time: 14:23)



Namely, union of all members of , is actually contained inside union of all members of this

, ok. Remember this  comes from the subbase , a subfamily of the subbase  ok? And we

know that this does not cover. So this is what we have to prove ok, which is stronger than just

showing that  does not cover ok. 

Let us prove this one now. Take a member here   inside  , by the very definition   is a

member of the base. Member of the base means, it is intersection of finitely many elements

 from the subbase .

We claim that one of the 's is actually inside  ok? See started with some  inside  ok we

want to show that; that  is contained in the union of these things ok. So, now, what we end

up with saying that one of this  is actually inside , ok. 

If this is not the case, let us say none of them is inside . So, this is another subclaim you

may say claim III, but claim II is not yet done--- it is part of claim II.

So, suppose none of these  is not inside . Then consider the family , which

is  , add this one more member, you get another family. Add  to  , you get one

family  . Add , you get  , add   you get   and so on. So, you get   etc

which are all larger than . So, I have put one extra element and that I am assuming is not

inside , each of them is a sub family of , ok.

So, every element inside this  is inside , also and contains  which of course, contains ,

but  by maximality of   these   are not  members  of  ,  you see they are larger than  

because the each  is a maximal element. This can happen only if each of them, each of them

admits a finite sub cover. There are members in this family such that union of them is a finite

cover for , ok.

So, what are those members? If you pick up only members from  that is not going to cover.

So, each time you have to put  also, but just   will not cover, along with some members

here finitely many,  this  will cover that is the meaning of that ok. So, I get for each  say

c



,  for  ;  these  are  the  members  of  ,  actually  they  are

members of . All these 's are members of .

And what are they? They are such that this union is whole of  along with .  has to be

there if  is not there that will be give you  is a finite cover that is the assumption that  is

the  does not have a finite sub cover.
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Now, look at all these 's, from  and so on, along with instead of  and

so on ok. You just take one set , viz, the intersection of 's, ok? And now the crux of the

matter is that this will be a finite sub cover for , clearly it is finite it is a finite sub cover for

, but these are all members of  only now. These are the members of ,  is starting with I

remember it was . Why this is the cover for ? Take any point in . If it is inside 's for

any , that is fine.

Otherwise, the point will be in the corresponding . Each time, if  is here that is ok, but if

this is not here, i.e.,  none of these  's contain  , then this point must be inside  . This

happens for every  which is the same thing as saying that point is inside  therefore, this is a

cover ok. So, this violate the fact that  is belongs to theta because there is a finite sub cover.



So, what we have proved is a sub statement here that one of the  's let us call it as   is

already in  ok. So, that just means that this  is an element of this  right. See  is already

inside ,  where we started with  ok they are intersections of yeah, this each

's are members of  ok. This this is the base this is the basic elements here alright.

But, what is ?  is  right, if it is in  also and instead of just being a subbasic, instead

of basic if it is a basic open set, that will be inside  by definition. Therefore,  is inside ,

just means that  is contained in the union of all these. This is the second part that we wanted

to show, the RHS here, RHS here, one of the members contains   because that element is

inside , ok.

So,  is one of them, so started with this one. So, we have shown that this union is contained

inside that one. So, that completes the proof of the claim 2 and therefore, Alexander subbase

is proved therefore, we have completed proof of Tychonoff's theorem also ok.
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One  question  that  immediately  occurs  to  our  mind  is  what  happens  to  the  analogue  of

Alexander's subbase theorem for Lindelof property?



Remember we have already seen that Lindelof is not even finite productive, namely we have

seen that  where  is the semi interval topology has the property that the product is not

Lindelof, whereas,   itself is Lindelof ok. But Alexander subbase theorem may still be

true. Why that is not true? What is happening is it not true at all.

So,  this  is  what  we  want  to  question.  Does  the  imitation  of  the  proof  in  the  case  of

compactness work, if we simply try to replace the phrase, finite sub cover by countable sub

cover. Wherever `finite' occurs, replace it with `countable', countable why, where do we go

wrong? 

You can figure it out where it is, but here is a concrete example which says that even in the

Alexander  sub  base  theorem  you  know  the  statement  will  not  be  true  if  you  replace

compactness by Lindelof property ok. 

So, that makes the Alexander sub base more important in some way. See, it is just such a

narrow thing and still  he was able to figure it out. That is the whole idea ok. So, for this one,

I will just quote this exercise 3.91.2 ok, but let me give you a little bit of this one what is it.

(Refer Slide Time: 24:43)



Look at the family  of closed intervals , where , ok. Then  forms a subbase for a

topology on . Any family of subsets of a given set  will form a topology as a subbase ok.

But  this  topology  is  nothing  but  the  discrete  topology  ok.  This  topology  is  a  discrete

topology, why? Because given any , I can take the interval  and other one 

, both closed intervals. Then the intersection will be just singleton .

So, every singleton  is open means, hence it is a discrete space. On the other hand so, once

it is a discrete space by the way, an uncountable discrete space is not Lindelof ok, on the

other  hand,  the  exercise  there  asserts  that  every  cover  by  a  sub  family  of  ,  admits  a

countable sub cover. This is for the usual topology of  ok, with the usual topology of  you

show that  are closed use the topology for that is a finite sub cover, we just show.

The finite sub cover part is just set theory, it covers  even this may be sorry this is not finite

sub cover countable sub cover. This may be uncountable sub cover normally, but you can

have a countable sub cover. So, this is the exercise. The point is if you take open intervals

 then of course, you know it, because  is Lindelof, you have to use that also. But, now

we have to show that even if you cover it by closed intervals it will have a countable sub

cover ok.

So, granting that exercise what we have is the following, namely Alexander subbase theorem

is not true for Lindelof's property.
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There is another remark which I would like to do, not with Alexander subbase theorem or

quotient  theorem and  so  on,  but  another  property  for  whether  something  is  productive.

Namely quotient maps, take two quotient maps and take the product of this maps. So,  to

 to , then you have a product map from  to  ok.

More generally, you can ask for families  to  or  is of quotient map then you can take the

product map here from product of  to product of . Is it a quotient map? And then you can

study the properties under quotient straightforward. This may fail, but suppose you take open

maps. suppose you take open quotient maps or closed maps or closed quotient maps and so

on. So, there are a number of such problems.

So, I will just sum it up we will not go into deeper study of these things, they are not too

difficult or they are not too easy. In fact,  some some of them will be taken in part 2 of this

course. But right now you can observe that openness is finite productive, if you take an open

map, two open maps, product will be an open map, that is very easy to see ok.

And if you have open quotient means open and surjective map that is an open quotient. Then

it will be productive, no restrictions even you can take arbitrary products ok 3 and 4 are much



harder, just if you take arbitrary quotients, just quotient maps even two of them, will not be a

quotient map, need not be a quotient map ok, unless you assume some more hypotheses ok. 

So, that is an interesting case here which is needed in many other places also so but that will

be done in part 2. So, we will stop here with productive properties and so on whatever so far

properties  which  we  have  studied.  So,  next  time  we  shall  start  studying  some  more

topological properties. They will be in general; they will be called what? What is the name?

Largeness properties.

Thank you.


