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Welcome to module 45 Tychonoff Theorem. So, Tychonoff theorem is a landmark result in

the development of point set topology. The key result that we are going to use as a step for

Tychonoff theorem is called Alexander's Subbase Theorem. Let  be a topological space and

fix a subbase  for this topology. Then  is compact if and only if every cover of   by a

subfamily of  admits a finite sub cover for .

We have seen that  if   has  a  base such that open covers  from this  base,  admit  a  finite

subcover,  then   is  compact.  That much we have seen already. But Alexander's  subbase

theorem goes one step ahead. It says instead of base you can just use a subbase. The proof of

Alexander's subbase theorem itself is not very straightforward. So, we should postpone the

proof of this one, but use this one to prove Tychonoff's theorem ok?
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So,  once  again  I  repeat  that  Alexander's  subbase  theorem  essentially  cuts  down  the

verification of compactness of a space, from arbitrary open covers to open covers coming

from a single subbase. So, that is the whole idea.

(Refer Slide Time: 02:19)



Tychonoff's theorem can be stated as follows, start with a family of topological spaces each

of them non empty. Then the product space  is compact if and only if each  is compact

ok? What we have seen is that, if the product space is compact each factor space is compact

of course. For this you have to use the that  's are non empty. Therefore, the projection

maps are surjective. A surjective continuous function takes compact sets to compact sets.

That is a very easy theorem that you have proved. Using that it will follow that if product

space is compact then each  is compact.
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Now, we have to prove the converse. Assume that each  is compact. Let  be the standard

subbase  for  the  product  topology  which  we  have  been  using,  namely,  consisting  of  all

 for all open sets  inside  and for all . By Alexander's subbase theorem if we

show that an open cover  from , you know members of , admits a sub finite sub cover

that is enough ok? Any arbitrary open cover, but members are from  , if that has a finite

subcover then  should be compact.

So, that is what we want to show now.  Starting with an arbitrary open cover with members

of  we will show that there is a finite subcover. 
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So, for each  put  equal to those  inside  such that this  is in . This  is

a cover that you have been given,  members of  cover  . From this we want to extract a

finite sub cover. So, first I define , this is a subfamily of open subsets in , consisting of

those  in  such that  belongs to this .

Then each member of , by the very definition is open in , ok? We claim that for at least

one  ,   is  a  cover  for  ,  ok?  We  have  not  claimed  that  all  the  's  will  cover  the

corresponding  here. At least for one of the indices this must happen is what we want to

say. If not, what happens? there exists some little  belonging to capital  minus the union

of all the  in   because this is not a cover for every  this will happen ok?

So,  pick  up  one  point   in  the  complement  of  this.  So,  this  gives  you  one  element  

belonging to  such that . Now  is in some member of  say because this this is

my this  here ok say  belongs to  for some  belonging to some , that is

what for some . This means that, if  belongs to this one means its  projection  which

we  have  chosen  must  be  inside   and  with   belonging  to  some  .  That  will  be  a

contradiction, because we have chosen this one to be such that they are in the complement of

all this ok.



So, therefore, one of the  will cover the whole of  Say  just for definiteness sake,  is

a  cover  for  .  Since   is  compact  this  gives  you  a  finite  sub  cover  which  you  call

 ok. It follows that ’s you take  inverse of these things, they will form

a finite sub cover for , from ; they are members of , that is how we have chosen. 

But this is now cover because   is the union of all these things. So,   inverse of for all

these things will be the whole inverse of this and will cover for  and these are members of

this. So, that completes the proof ok.
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That completes the proof of Tychonoff's theorem. There are several proofs of this important

theorem.  Indeed  it  is  a  fashion  with  every  aspiring  topologist  to  give  his  own proof  of

Tychonoff's theorem, never mind that only a few of them may succeed. Nevertheless there

are quite a few proofs of this theorem ok.
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Now, let me give you an example here, namely, our favourite example  with semi interval

topology lower limit topology and so on there are various names or this. This we have seen

earlier several times ok. This space is a Lindelof space ok. 

So, let  be a family of semi open intervals which cover  ok. So, I am trying to prove why it

is a Lindelof space it is not very easy to see that ok? 

It is enough to show that this admits a countable sub cover ok. So, I am using that this  is

actually a base here open subsets of the form  that is the definition of this topology ,

ok? Take a cover by these open sets there is no need to take unions of these things and so on

this is the base. 

So, you can take this one and then show that it admits a countable sub cover ok. So, what do

we do? We will use the property of  in the usual topology and then compare it with this one.

So, put  equal to the union of open internals  where this  closed here, these are

members of this  ok? So, we started with a family  of semi open intervals which covers . 



Now you drop out the the first point here in each interval ok? and take only open intervals

. Then this union will be clearly an open subset of the usual topology in , but now the

usual topology is second countable. 

Therefore, it follows that there exists a countable sub family  contained inside  such

that this  is union of countably many open intervals . So, what I am using is every

open subset of a second countable space is second countable. Therefore, it is a Lindelof ok. If

I just use directly   is Lindelof, I do not know how to conclude this one is Lindelof

because it is an open subset not a closed subset ok. But if you say second countable, then

every subspace is second countable and a second countable space is Lindelof. 

So, you get a countable sub cover for this subspace   which is an open subset. Now I put

back all the points 's but only taking from this countable sub cover, put  equal to union of

  put back these points. This may not be the whole of . If that were , you are fine.

See we dropped out all these initial point of the interval is right? Now you put back some of

them, but that may not be the whole of ; however, it is not difficult to see that whatever is

left out namely, put  . What are they? They are all the starting points of intervals

 coming from , some of them some of them are already here in this countable family,

some of them are left out. 

That space   is definitely a closed subspace. It is a discrete set. No open interval

will be contained inside that one, the open parts have been taken care by this  that is

easy to see that. And hence it follows that  is countable. Once  is countable you pick up

open subsets which cover , ok, for each one of them, one open subset from . Along with

that you put all these 's also which you have got already. Together you get a countable

family that will cover the whole of , ok?
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So, that shows that the semi open interval topology is Lindelof. But now I am going to show

that the product is not Lindelof, see that was my idea. You know we showed products, even

infinite products and so on of compact space is compact right? And we are all the time telling

that Lindelof  property keeps tagging along. So, this is  one place where it  does not,  even

product of two of them need not be Lindelof ok.

So, take  equal to , I should be take this should be taken  because I have

used this notation  here ok. So, look at that, it is not Lindelof. For if it were then the anti-

diagonal , we have used this one earlier ok? The anti diagonal, being a closed

subspace ok, will be also Lindelof because closed space of a Lindelof space is Lindelof. 

On the other hand given any point . Consider the open subset,  or 

whatever, cross  some positive number  and not necessarily  , you take

these open subsets.

These are open subsets in  , ok, in the product topology alright? What is the

intersection of this one with the anti diagonal? It would be just the first point  ok. So,

intersection with the subspace  is just the singleton; that means, all the singletons are open

in  in the subspace topology. It just means that  is a discrete space.



However its cardinality is the cardinality of , its uncountable ok? For each  there is

. So, an uncountable discrete space cannot be Lindelof ok. 
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So, that is a picture for showing that the anti diagonal is what? It is a discrete subspace. So,

we have given an example of a Lindelof space, the product with itslef is not Lindelof. 

We have shown that the product is compact if each factor is compact, but the Lindelof of

property is not even finite productive ok. 
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 Coming back to this Alexander subbase theorem, let us get a little bit familiar with one of the

central results in the set theory which is very useful especially in topology and algebra. Of

course, we are going to employ this immediately in the proof of Alexander subbase theorem

ok.  So,  a  little  more  point  set  topology  here  today,  and  then  we  will  wind  up  today.

Tomorrow we will again proceed with Alexander's subbase theorem. 
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So, this is about partial order and so on. Start with a set which is partially ordered. Preferably

nonempty ok?  Do not  take  empty set  and all.  By  a maximal  element  in  ,  we mean  

belonging to  such that  is less than equal to  for some  will imply .

There is nothing sitting over . So, that is the meaning of maximal element alright? Note that

there may not be any maximal element inside . Like if you take  with the usual order it

has no maximal elements.  That means,  it  is  not  bounded above. So, there is no maximal

element. 

Also there can be more than one maximal element ok. So, you can think about that. You

know if you take some subsets of any set, then put inclusion relation, it can have bigger ones

one bigger ones another bigger here, those two are not comparable and so on. There are lots

of such examples alright. So, maximal elements may not exist and also there may be plenty of

them also either of them can happen.
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Now, there is another simple definition. By a chain in a partial order set we mean a subset of

the form whenever  and  are inside this subset either  must be less than or equal to  or 

must be less than or equal to  ok. Of course, if both of them happen that is also allowed, but

then  will be equal to , that is by definition. In other words,  is a chain if and only if under



the restricted  order  it  becomes a  totally  ordered  set.  That  is  another  name for  it,  totally

ordered sets always have this property ok.
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A totally ordered subset of a partially ordered set would be called a chain.  We have just

introduced another  word here which is  popular in set  theory.  Let   be a subset  of some

partially ordered set. An element   is called an upper bound for   if   belongs to  

implies  is less than equal to . So, this is an upper bound. 

So, all these things are very straightforward definitions, but these definitions are now made in

arbitrary partially order set that is what you have to be careful not inside  or  or integers

and so on ok.
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They will of course apply to   etc, all those things also. But this is a general partially

ordered set alright. Now, here is what is called the Zorn's lemma which is almost like one of

the axioms of Set theory, as such, equivalent to axioms of choice. Zorn's lemma says that

start with any nonempty partially ordered set. Suppose every chain in this   has an upper

bound. 

Then   has at  least  one maximal element.  It  does  not say anything about uniqueness  of

course, there may be plenty of them. It just assures you there is a maximal element ok, that is

Zorn's lemma alright. 
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So, next time we shall use this one very effectively to prove Alexander subbase theorem.

Thank you.


