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Welcome to module 44 on Point Set Topology course. So, today, we will continue our study

of properties which are preserved under products, Productive Properties. So, let us begin with

this proposition.

You start with an arbitrary product of topological spaces , pick up a point in it. So,  will

be first countable at that point if and only if each factor   is first countable at   for all

. So, all coordinate points are having a countable base that is the first condition.

Second condition is that the subset  of the indexing set all  belong to  such that this 

is not a Sierpinskiski point in . Look at all such indices. That set  must be countable.

Then the other part is if and only if. So, then the converse is also true. This is what the



proposition says. These are somewhat not very straightforward so, let us go through the proof

carefully ok.
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So, first, suppose  is I-countable, the product space, at the point  belonging to . That

means that we have a countable local base for  at the point . That is the meaning of it is



first countable at . Then, (a) follows from the fact that all the coordinate projections are open

and surjective. 

So, if you take   where   ranges over the countable local base,  that will give you a

countable  base for   at  the point   ok? So,  this we have seen that  first  countability is

weakly hereditary in the sense that under open surjective maps, it is preserved. So, part (a) is

proved, the second part is something peculiar ok?
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Suppose that for some uncountable subset  of  is not a Sierpinski's point ok? ....
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What I am doing here yeah to prove (b), suppose  is a countable neighbourhood system of

 at each point and  is not countable. You want to prove that  is not countable; that

means, what? There are uncountably many   such that   is a not Sierpinski's point means

that they have proper open subsets as neighbourhoods, Sieripinski point is defined to be such

a point wherein the only open set containing that point is the whole space right?

So, not a Sierpinski's point means  belongs to  open and  is a proper subset of ,

for every   inside   with   is  uncountable.  So, now I am assuming that  this is  not

countable.  Now,  what  happens?  This  is  countable,  that  is  not  countable,  so  something

happens.

Then, for each  is a subbasic open set right. There must be a  belonging to

 that is  is the countable base at the point  for  right? So, this  must be inside 

for  in , ok?

By pigeon hole principle, while for each  there is such a thing I mean for each, but number

of members in  this is only countable, but these ’s are coming from an uncountable set 

. So, it follows that one of the  inside  for which this happens for an uncountable subset I

of , right?



If all of them are countable, countable union of countable sets will be countable so  will

be countable. So, that means, that   when you project   coordinate that is contained

inside   because   is contained in the   and this is happening and  's are not the

whole space. So,   are proper open subsets, containing proper open subset for every  

that is a contradiction to this basic fact that we have observed earlier ok.

This must happen at  most for finitely many right? at all other coordinates it must be equal to

whole of , but now we have got uncountably many. That is a contradiction. So, that proves

what? One way. So, I have to prove the converse. Suppose (a) and (b) are true. Then I have to

show that  has a countable base at the point . So, that is easier actually.
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Choose a countable local base  at  for every , where  is inside . Remember what

 is?  is set of points wherein these 's are not Sierpinski's point. For those indices I

am choosing countable base. For others what should I choose? It does not matter because the

only open set  containing   will  be the whole of  ,  it  does not  matter.  you can choose

singleton , that itself is the countable base. So, you can ignore them, that is the meaning

ok.



But  now,  I  have  chosen  for  each  ,  I  have  chosen  a  countable  base  at   and   is

countable. So, this  is the set of all , where  is inside this countable family and 

runs over all of , this is countable. So, these are countably many open subsets So, this is a

countable family ok.

Therefore,  if  you  take  finite  intersections  of  members  of  this  family,  that  will  be  also

countable ok, but once you take all  finite intersections that becomes a local base at  for the

product space . 

The Sierpinski  points where you see all  those indices,  they do not trouble  you at  all  ok

because, as soon as you take some open subset around corresponding  there around , it

will  be  the  entire  space  .  ok?  So,  for  those  things  you  do  not  have  to  take  finite

intersections so only on this family you have to take. So, that will become a countable base at

.

Now, why I have proved this one so carefully is that this is a pointwise statement. Now, the

same proof we will go through if you want to do globally ok, proof will be the same, but

statement will be slightly different. What is that? Because now, you are taking for all points

this is happening ok, you want to do that; that is for first countability at all the points of .

This was first countability at a single point right? First countability at all the points now. So,

that is our next theorem.

 is I-countable if and only if each  is I-countable that is the first part, this is pointwise;

we saw this first  part.  But the second part  says that   is  indiscrete  space for all,  but  a

countable number of .

If all the points are Sierpinski's points in a space right that is an indiscrete space, that is the

difference between condition (b) here and condition (b) in the previous proposition. For a

countable subset of  , anything can happen. Other than that, all of them must be indiscrete

spaces ok? Yeah, product with indiscrete space, does not disturb the rest of the things that is

what the theme is here ok.
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So, let us go through this one, but this is more or less like the previous proposition. Let  be

I-countable. Then I-countability  of each   for   follows from the above proposition ok?

Same argument like open surjective maps preserve the I-countability. This proves (a).

Next suppose for an uncountable set  of , 's are not indiscrete ok. This means that we can

select  belonging to  which is not a Sierpinski point for each  and this is uncountable

set  ok. So, having chosen  's, you take a point   which has these as the coordinates  

coordinate is equal to , you choose an x belong to  such that  is equal to  on this

uncountable set, other things can be anything.

Then from the proposition above it follows that  is not I-countable at that point  because

condition (b) also proposition is not satisfied. So, by contradiction, you have proved property

(b), ok?
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The converse is also easy here. Suppose  contained inside  is countable and  is indiscrete

for   in the complement. This is the condition we want, away from a countable set it all of

them 's should be indiscrete. Then for each , we select a countable local base  at

 for each .

See again you have to do it by pointwise construction ok? The indiscreetness gives you for all

point  the  Sieripinski  condition  (b)  is  satisfied.  Therefore,  the  same  conclusion  as  in  the

propesition will work for case also, ok? , where 's are inside  and , this  is

countable, you check that this forms a local base ok. 

This is repetition of the previous part, the only thing is having an indiscrete space away from

a countable set  will give you the Sierpinski points ok just naturally  the condition   is

countable will be satisfied.
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Now, we just make a statement, and its proof is straightforward. Let  is countable product

of an arbitrary family of topological spaces. It will be II-countable if and only if each factor

 is II-countable and 's are indiscrete except for a countable number of . So exactly

same thing as I-countability. So, this time you do not have to worry about pointwise, you take

a base here, go back come back and so on, the same proof will work.
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Let us come to now separability in our list. Separability is a tricky business ok? One has to be

a bit careful here, but whenever things happen, it happens easily also. It is easy to check that

if each   is separable and   is countable, then   is separable ok? All that you have to

observe is that product of  closure is equal to the closure of the product of 's ok? First

take the product and then, take the closure, that is the same thing as first take all the closures

and then, take the product.

So, if  's are dense in  ,   will be the whole of   ok? Then, you take the countable

product, then take the closure that will the whole space. The only thing is (this is always true

of course),  that  a product of countable set is countable. That has to be used. If  you take

uncountable product, it need not be countable alright?

So, countability has to be preserve so, you have to take J to be countable that is all. However,

there  is  a  curious  phenomenon  here,  namely,  even  if  the  cardinality  of   is  the  first

uncountable, which is denoted by the letter  (this is the cardinality of the reals, For example,

ok?) I-continuum ok, then   turns out to be separable though the argument I have given

does not work and it is not an easy argument here.

So, we have no time to do that one and you know it is not used by us anyway anywhere. So, I

have  given you a  reference  you can  look into that  namely Willards's  book.  However,  if

cardinality of  is bigger than , then even this will fail. Each of  may be separable, but the

product may not be separable ok?
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So, let us stop here for today, just summing up what we have done so far. So, after hereditary

property and co-hereditary properties checking for various things namely connectivity, path-

connectivity, compactness, lindelofness, I-countability, II-countability and separability. Then,

yesterday and today, we checked about I-countability and II-countability and separability ok.

So, this is the list of the various  properties of topological properties that we have studied so

far alright. So, we have still more thing to do with product properties namely compactness

and lindeloftness, we have to worry about that. So, that is another topic. So, that will be taken

next time ok.

So, thank you.


