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Welcome to module 43 of Point Set Topology Part-I. As promised last time, today we shall

study Productive Properties or whatever topological properties we have made, we will verify

which one is productive which one is not. That is the whole idea of today's talk ok.

So, when you are studying products, I would like to recall a few conventions and notation

that  we  have  made  earlier  and  also  introduce  some  more  convenient  notation.  The

fundamental idea here is that when you have finite products, it is ok to use the ordered tuple

notation, the Cartesian coordinate space notation. But when you go to infinite products, it is

totally inconvenient and whatever you use, it will not be exactly rigorous, you will have to

keep on using identifications ok.



So, we will try to reduce that kind of notation as far as possible and use a logically consistent

notation and that is possible only if you think of the product space as a function space ok? So,

having said that let me start telling you what are these notation.

 will denote a nonempty indexing set. So, this is all for the entire of this course you can say,

but definitely in this chapter.  denotes a subset of  and  will denote the complement of 

inside  ok? For each  denotes a nonempty topological space. So, I have used non-

emptiness twice here, pay attention to that. Whenever   is also non-empty,   denotes the

product space over this indexing set , This suffix  is the indexing set ok?

Remember I used  ,  superscript   only when all  the  's  are  equal  to  . So, that  is a

different notation, I am not going to use that one here at all ok? The underlying set of , I

want to recall, namely, it consists of some functions. I will call them element of the product,

but they are function ok? From where? from the indexing set   to the disjoint union of all

these sets 's ok. So, any function like this, will be an element of this product. So, that is the

underlying set.
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Then,  we have  these  projection  maps   from   to  ,  What  are  these?   is  a

function remember, you evaluate  at the  element here,  is an element of , so , this



is another notation  this is our usual coordinate notation. So, I do not want to give up that

one completely,  but I have given up the ordered n-tuple notation, ordered pairs and so on ok.

So, let  now,  is capital, this also denotes the projection map from , the entire product

space to , which is the partial product because  is a subset of , this denotes the projection

map defined by the same principle namely  is a point in . So, it is a map on  to the

disjoint union of ’s, on the point  of ,  it is ; other coordinates are forgotten that is the

meaning of this projection map . We also use the notation  to be image of  under , to

be consistent with this one, whether it is a singleton or a whole set of bunch of indices, you

can use that notation.

Moreover, suppose  is a point of ; everything ok.  is a point here and suppose  is a

point in inside . So,  and  are disjoint ok so, you have complementary things, we shall

use the notation this ordered pair   to represent the unique element in   with the

property that   is   and   of this point is  . If I give   and  , the point is

uniquely determined and that point has the property that  of this point is  and  of this

point is . So, that is the meaning of this one ok.
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So, note that for any proper subset  of  and for any nonempty subset  of , we have the

 projection of  is the whole of  for all  in the complement of  ok, complement

of  will pick up all the elements  that is . Observe this one ok? So, these are basic

things which you have to be familiar with. Then only you can make sense out of the product

space.
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The central fact which will be used again and again is that the collection  of all  ,

where 's inside  are open, and  is inside . So, these are all variables here, look at all

. Together that collection forms a subbase for the product topology on . That is

the definition of the product topology on , ok? So, I am just recalling that.

Now, something more I am going to introduce here, this notation. Let  denote the set of all

finite subsets of , all finite subsets, I do not need empty set so, you throw away empty set, it

may cause unnecessary problem that is all. Then, look at the collection  which is  

where  is open in  and  is inside .

So,   is a finite set,   is open in   which just means you know, you can take this as, to

begin with, , where  is are open in , but there are more open sets ok

than  just  product  open  sets,  you  take  all  of  them  take   inverse  of  those,  this  will



automatically contain all the finite intersections of members of this so, it will be a base. It

will have more open set no problem so, it will be base. So, this base is more convenient for

me so, I will use this one, but this is subbase that may be also used ok, these two things I will

keep using.

It should also be noted that each  is an open map, for every non empty subset of  of , the

empty subset , this  does not make sense so, that is what you have to mention non-empty

ok, all the projection maps are open maps.
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Moreover, take any member of this  ,  what are they? They look like   ok,  for  

belong to ,  is equal to  for all but finite number of  ok, this is true actually for

members of  also. Here it is only one , if  is not equal to , it will be whole thing, but here,

it will be like this so, this is true for members of  also ok.
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So, with these conventions, you will see that  many proofs can be written very clearly, idea

becomes extremely clear. The first thing I want to prove is connectivity and path connectivity

are product invariant, which is  at the bottom of our list 6 and 7 ok? But these these concepts

were the first thing which we have considered in our chapter alright.
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Now, each factor  is a quotient of , right? Open quotient. Actually under any surjective

map will do. Connectivity and/or path connectivity of   implies that of  , this we have

seen several times ok. So, this part is alright, it is the proof of the converse that needs to be

worked  out,  namely,  if  each   is  connected/path  connected,  then  the  product   is

connected/path connected.

Once again, path connectivity is straight forward. Suppose each  is path connected starting

with  any  two points   inside  ,  you  can  choose  path   for   to   continuous

function joining these points  to . They are inside  right? So, there, you can join them.

So, you have got all these families of paths, then you define one single  from  to 

such that its  component is .

See  must be a function right? From  into the disjoint union of all these ’s. So, on the

 element you take this path , ok? So, automatically this will be continuous function.

We have verified that a function is continuous if and only if all its coordinate functions are

continuous. These are continuous so, this is continuous.

When you put , this will give you  which is , , it will be , right? For each 

that is the thing; that means,  is  and  is . So, it is a path joining  and  that proves

the product is path connected.
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So, let us now concentrate on connectivity. Recall that we have already proved that finite

products of connected space is connected. So, this is corollary 3.35 or whatever ok, I do not

have to show it to you, we know this one very clearly, not very long ago, we proved this one

alright.

Indeed, we proved a stronger result namely if   is connected and the fibers are connected,

then   is connected under any quotient quotient map right? And using that we can prove

product  of  two  of  connected  space  is  connected,  then  three  of  them  is  connected,  and

inductively any finite product is connected alright. So, I am going to use that one.
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Now, I go to the case of product of arbitrary family. So,  for  be a family of connected

topological spaces. Take any point  what you should show? If the connected component of

that point   is the whole  . Then I am done. These are my  's, I  am taking  , a short

notation the product.  be any point of . I am taking a point in the product space, after all I

won't show the product space is connected, but what is my idea? 

Idea is to show that the connected component of any point is the whole space ok. So, this is a

first step here.

Take  to be all  for . Remember what is ?  is a point inside  which

is the projection of  ok? Take  inverse of that which is nothing, but , see that is

notation for this, if you are going to use the cartesian coordinate notation, I do not want to use

it so, I have written it carefully like this .

The coordinates inside ; they are dropped out, there is no mention, they could be arbitrary,

but when  is inside ; that means,   is not in  , the coordinates of that point must be the

coordinates of this point , they must coincide so, that is the meaning of this  inverse of this

one ok. Take union of all these where  is a finite set,  is belong to , finite subsets of  ok.



Each  is homomorphic to . Just know I told you, it looks like  cross one single

point in the complementary product namely in   ok, they are homomorphic  , they are

connected why? Because   is finite and the finite product is connected we have used. So,

these are each of them on the right-hand side is connected.

Moreover,  is a common point to all of them. Therefore, it follows that  is connected. So,

this argument we have used before also ok. It is very easy to see that  is connected: take a

separation if possible. Suppose  is , where will be ? It will be in one of  and . The

moment  is inside , all these things will be inside  ok; that means,  is empty. So, if  is

inside ,  is empty, if  is inside ,  is empty so, there is no separation.

So, this is a connected set, this is not the whole of , but it is very close to that, namely,

what is its closure here? If you take the closure of this, it is the whole space, that is the claim

ok. 
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We shall show that   closure is   ok? So, half the step we have proved that  this is a

connected set, the second half is that its closure is the whole space ok. So, that will complete

the proof why? Because closure of a connected set is connected alright. 



So, what is the meaning of saying that the closure the whole space? Every nonempty open

subset in  will intersect . So, that is what I have to prove that  intersects every non-

empty open subset  of .

What is the meaning of  is an open subset non-empty inside ? It contains an open subset

of the form  for some open subset of  in . These are the basic open sets, that is

the first thing I am going to use here where  is itself a finite subset of , ok? There must be

some such thing and  must be non-empty, open inside ,  must be finite.

Take a point  inside this , this  is non-empty right? Now look at this point ,

what is the meaning of this? All the  coordinates for  inside  are  and if  is inside , then

it is . So, that is the meaning of this point, we have defined this one.

This point is clearly inside  because its  coordinates equal to . Also, this point is

inside  because this  is inside . So, it is  ok so, it is in the intersection,

but the first set is contained inside , the second set is contained inside where? The second

set I have written just now, it is contained inside . 

So, the point is contained in  that is the end of the proof why? Because starting with 

, I have shown that  is non-empty ok.     (Refer Slide Time: 21:16)



Here is a picture if you want a picture to explain what is going on. Whatever I have told here

so, this  is  an arbitrary point   right,  then I have  bunched up this   is  a  finite set  of

indexing sets right suppose it just , then this looks like the -axis and the rest of them are 

-axis, the rest of them are ; I have put. So, you have divided the entire set into ;  and .

So, draw this this this is one plane, this is a finite product of finite things right so, this is

connected.

Now, if you take an arbitrary point  inside this  inverse image, this dot dot dot  ok is

. So, if you take any point like this here , you can project back here actually

this  have started with a point here  and this is  of that length, this  is nothing, but 

here in the notation ok.

Its  other  coordinates  are  just  the  coordinates  of  this  point,  you  can  think  of  this  as  

coordinate here,  coordinate of  and this point  are the same ok. So,  coordinate of these

two are same. So, that is precisely the point here which will be in the intersection, this was

my arbitrary  ok. So, every  contains such set is what you have to use namely what are the

base for the product topology that is all ok.

So, you see the proof that product is connected has just two ideas, one is you look at a point

and then, take all these coordinate planes, finite coordinate planes passing through the given

point. So, I am using the terminologies motivated from  and so on ok, that is the

only way you can picture it, you can imagine coordinate planes and so on ok, there are no

planes here after all, all are arbitrary topological spaces ok. So, that set  is what it is dense.

So, that is all you have to remember. Proofs are not at all difficult ok.

So, let us do the other things next time. This result itself is something substantially good we

have done. Other properties we shall do next time.

Thank you.


