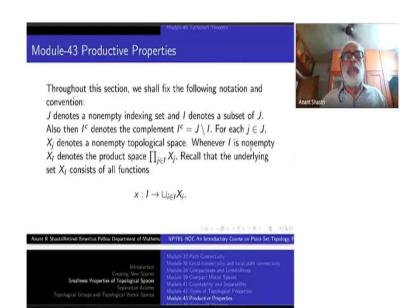
Introduction to Point Set Topology, (Part I) Prof. Anant R. Shastri Department of Mathematics Indian Institute of Technology, Bombay

> Module - 43 Lecture - 43 Productive Properties

(Refer Slide Time: 00:16)



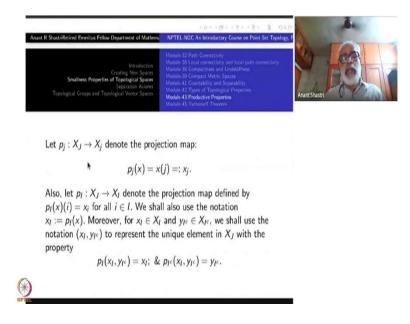
Welcome to module 43 of Point Set Topology Part-I. As promised last time, today we shall study Productive Properties or whatever topological properties we have made, we will verify which one is productive which one is not. That is the whole idea of today's talk ok.

So, when you are studying products, I would like to recall a few conventions and notation that we have made earlier and also introduce some more convenient notation. The fundamental idea here is that when you have finite products, it is ok to use the ordered tuple notation, the Cartesian coordinate space notation. But when you go to infinite products, it is totally inconvenient and whatever you use, it will not be exactly rigorous, you will have to keep on using identifications ok. So, we will try to reduce that kind of notation as far as possible and use a logically consistent notation and that is possible only if you think of the product space as a function space ok? So, having said that let me start telling you what are these notation.

J will denote a nonempty indexing set. So, this is all for the entire of this course you can say, but definitely in this chapter. I denotes a subset of J and  $I^c$  will denote the complement of I inside J ok? For each  $j \in J, X_j$  denotes a nonempty topological space. So, I have used nonemptiness twice here, pay attention to that. Whenever I is also non-empty,  $X_I$  denotes the product space over this indexing set I, This suffix I is the indexing set ok?

Remember I used  $X^{I}$ , superscript I only when all the  $X_{i}$ 's are equal to X. So, that is a different notation, I am not going to use that one here at all ok? The underlying set of  $X_{J}$ , I want to recall, namely, it consists of some functions. I will call them element of the product, but they are function ok? From where? from the indexing set J to the disjoint union of all these sets  $X_{i}$ 's ok. So, any function like this, will be an element of this product. So, that is the underlying set.

(Refer Slide Time: 03:46)



Then, we have these projection maps  $p_j$  from  $X_J$  to  $X_j$ , What are these?  $p_j(x), x$  is a function remember, you evaluate x at the  $j^{th}$  element here, j is an element of J, so x(j), this

is another notation  $x_j$ , this is our usual coordinate notation. So, I do not want to give up that one completely, but I have given up the ordered n-tuple notation, ordered pairs and so on ok.

So, let  $p_I$  now, I is capital, this also denotes the projection map from  $X_J$ , the entire product space to  $X_I$ , which is the partial product because I is a subset of J, this denotes the projection map defined by the same principle namely  $p_I(x)$  is a point in  $X_I$ . So, it is a map on I to the disjoint union of  $X_i$ 's, on the point i of I, it is  $x_i$ ; other coordinates are forgotten that is the meaning of this projection map  $p_I$ . We also use the notation  $x_I$  to be image of x under  $p_I$ , to be consistent with this one, whether it is a singleton or a whole set of bunch of indices, you can use that notation.

Moreover, suppose  $x_I$  is a point of  $X_I$ ; everything ok.  $x_I$  is a point here and suppose  $y_{I^c}$  is a point in inside  $X_{I^c}$ . So, I and  $I^c$  are disjoint ok so, you have complementary things, we shall use the notation this ordered pair  $(x_I, y_{I_c})$  to represent the unique element in  $X_J$  with the property that  $p_I(x_I, y_{I_c})$  is  $x_I$  and  $p_{I^c}$  of this point is  $y_{I^c}$ . If I give  $p_I$  and  $p_{I_c}$ , the point is uniquely determined and that point has the property that  $p_I$  of this point is  $x_I$  and  $p_{I^c}$  of this point is  $y_{I^c}$ . So, that is the meaning of this one ok.

(Refer Slide Time: 06:38)



So, note that for any proper subset I of J and for any nonempty subset  $U_I$  of  $X_I$ , we have the  $j^{th}$  projection of  $p_I^{-1}(U_I)$  is the whole of  $X_j$  for all j in the complement of I ok, complement of I will pick up all the elements  $X_j$  that is  $p_I^{-1}(U_I)$ . Observe this one ok? So, these are basic things which you have to be familiar with. Then only you can make sense out of the product space.

(Refer Slide Time: 07:19)



The central fact which will be used again and again is that the collection S of all  $p_j^{-1}(U_j)$ , where  $U_j$ 's inside  $X_j$  are open, and j is inside J. So, these are all variables here, look at all  $p_j^{-1}(U_j)$ . Together that collection forms a subbase for the product topology on  $X_J$ . That is the definition of the product topology on  $X_J$ , ok? So, I am just recalling that.

Now, something more I am going to introduce here, this notation. Let  $\mathcal{F}$  denote the set of all finite subsets of J, all finite subsets, I do not need empty set so, you throw away empty set, it may cause unnecessary problem that is all. Then, look at the collection  $\mathcal{B}$  which is  $p_I^{-1}(U_I)$  where  $U_I$  is open in  $X_I$  and I is inside  $\mathcal{F}$ .

So, I is a finite set,  $U_I$  is open in  $X_I$  which just means you know, you can take this as, to begin with,  $U_1 \times U_2 \times \cdots \times U_n$ , where  $U_i$  is are open in  $X_i$ , but there are more open sets ok than just product open sets, you take all of them take  $p_I$  inverse of those, this will automatically contain all the finite intersections of members of this so, it will be a base. It will have more open set no problem so, it will be base. So, this base is more convenient for me so, I will use this one, but this is subbase that may be also used ok, these two things I will keep using.

It should also be noted that each  $p_I$  is an open map, for every non empty subset of I of J, the empty subset I, this  $p_I$  does not make sense so, that is what you have to mention non-empty ok, all the projection maps are open maps.

Ander & StastelReinel Eneritus Felow Department of Mattern
NPEEL-NOC A landoutcary Course on Point Set Topolograf, I

Main M StastelReinel Eneritus Felow Department of Mattern
Mathe 32 Path Correctivity Mathe 34 Lead Connectivity and local path correctivity Mathe 35 Lead Connectivity and local path correctivity Mathematication and local path correctivity

(Refer Slide Time: 09:46)

Moreover, take any member of this S, what are they? They look like  $p_j^{-1}(U_j)$  ok, for V belong to S,  $p_j(V)$  is equal to  $X_j$  for all but finite number of  $j \in J$  ok, this is true actually for members of  $\mathcal{B}$  also. Here it is only one j, if i is not equal to j, it will be whole thing, but here, it will be like this so, this is true for members of  $\mathcal{B}$  also ok.

## (Refer Slide Time: 10:34)



So, with these conventions, you will see that many proofs can be written very clearly, idea becomes extremely clear. The first thing I want to prove is connectivity and path connectivity are product invariant, which is at the bottom of our list 6 and 7 ok? But these these concepts were the first thing which we have considered in our chapter alright.

(Refer Slide Time: 11:04)

**Proof:** Since each factor  $X_j$  is a quotient of  $X_J$ , connectivity/path connectivity of  $X_J$  implies the same for  $X_j$ . It is the proof of the converse that needs some work. Suppose each  $X_{j_1}$  is path connected. Given any two points  $x, y \in X_J$ , choose paths  $\omega_j : [0, 1] \to X_j$  joining  $x_j$  to  $y_j$ . Then the function  $\omega : [0, 1] \to X_J$  defined by

 $\omega(t)(j) = \omega_j(t)$ 

Anant Shason

is a path joining x and y.



Now, each factor  $X_j$  is a quotient of  $X_J$ , right? Open quotient. Actually under any surjective map will do. Connectivity and/or path connectivity of  $X_J$  implies that of  $X_j$ , this we have seen several times ok. So, this part is alright, it is the proof of the converse that needs to be worked out, namely, if each  $X_j$  is connected/path connected, then the product  $X_J$  is connected/path connected.

Once again, path connectivity is straight forward. Suppose each  $X_j$  is path connected starting with any two points x, y inside  $X_J$ , you can choose path  $\omega_j$  for [0, 1] to  $X_j$  continuous function joining these points  $x_j$  to  $y_j$ . They are inside  $X_j$  right? So, there, you can join them. So, you have got all these families of paths, then you define one single  $\omega$  from [0, 1] to  $X_J$ such that its  $j^{th}$  component is  $\omega_j$ .

See  $\omega(t)$  must be a function right? From J into the disjoint union of all these  $X_j$ 's. So, on the  $j^{th}$  element you take this path  $\omega_j(t)$ , ok? So, automatically this will be continuous function. We have verified that a function is continuous if and only if all its coordinate functions are continuous. These are continuous so, this is continuous.

When you put t = 0, this will give you  $\omega_j(0)$  which is  $x_j$ , t = 1, it will be  $y_j$ , right? For each j that is the thing; that means,  $\omega(0)$  is x and  $\omega(1)$  is y. So, it is a path joining x and y that proves the product is path connected.

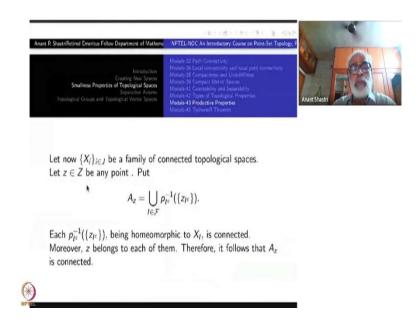
## (Refer Slide Time: 13:26)



So, let us now concentrate on connectivity. Recall that we have already proved that finite products of connected space is connected. So, this is corollary 3.35 or whatever ok, I do not have to show it to you, we know this one very clearly, not very long ago, we proved this one alright.

Indeed, we proved a stronger result namely if Y is connected and the fibers are connected, then X is connected under any quotient quotient map right? And using that we can prove product of two of connected space is connected, then three of them is connected, and inductively any finite product is connected alright. So, I am going to use that one.

## (Refer Slide Time: 13:28)



Now, I go to the case of product of arbitrary family. So,  $X_i$  for  $i \in J$  be a family of connected topological spaces. Take any point z what you should show? If the connected component of that point z is the whole Z. Then I am done. These are my  $X_j$ 's, I am taking Z, a short notation the product. z be any point of Z. I am taking a point in the product space, after all I won't show the product space is connected, but what is my idea?

Idea is to show that the connected component of any point is the whole space ok. So, this is a first step here.

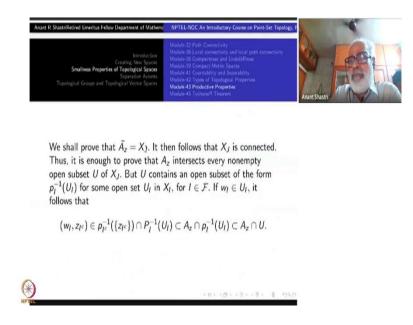
Take  $A_z$  to be all  $p_{I^c}^{-1}(z_{I^c})$  for  $I \in \mathcal{F}$ . Remember what is  $z_{I^c}$ ?  $z_{I^c}$  is a point inside  $X_{I^c}$  which is the projection of z ok? Take  $p_{I^c}$  inverse of that which is nothing, but  $X_I \times \{z_{I^c}, \text{ see that is}$ notation for this, if you are going to use the cartesian coordinate notation, I do not want to use it so, I have written it carefully like this  $p_{I^c}^{-1}(z_{I^c})$ .

The coordinates inside I; they are dropped out, there is no mention, they could be arbitrary, but when j is inside  $I^c$ ; that means, j is not in I, the coordinates of that point must be the coordinates of this point z, they must coincide so, that is the meaning of this  $p_I$  inverse of this one ok. Take union of all these where I is a finite set, I is belong to  $\mathcal{F}$ , finite subsets of J ok. Each  $p_{I^c}^{-1}(z_{I^c})$  is homomorphic to  $X_I$ . Just know I told you, it looks like  $X_I$  cross one single point in the complementary product namely in  $I^c$  ok, they are homomorphic  $X_I$ , they are connected why? Because I is finite and the finite product is connected we have used. So, these are each of them on the right-hand side is connected.

Moreover, z is a common point to all of them. Therefore, it follows that  $A_z$  is connected. So, this argument we have used before also ok. It is very easy to see that  $A_z$  is connected: take a separation if possible. Suppose  $A_z$  is B|C, where will be z? It will be in one of B and C. The moment z is inside B, all these things will be inside C ok; that means, C is empty. So, if z is inside C, B is empty, if z is inside B, C is empty so, there is no separation.

So, this is a connected set, this is not the whole of  $X_J$ , but it is very close to that, namely, what is its closure here? If you take the closure of this, it is the whole space, that is the claim ok.

(Refer Slide Time: 18:09)



We shall show that  $A_z$  closure is  $X_J$  ok? So, half the step we have proved that this is a connected set, the second half is that its closure is the whole space ok. So, that will complete the proof why? Because closure of a connected set is connected alright.

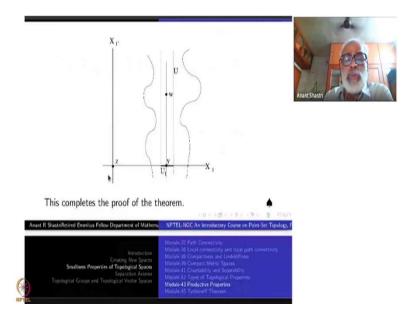
So, what is the meaning of saying that the closure the whole space? Every nonempty open subset in  $X_J$  will intersect  $A_z$ . So, that is what I have to prove that  $A_z$  intersects every non-empty open subset U of  $X_J$ .

What is the meaning of U is an open subset non-empty inside  $X_J$ ? It contains an open subset of the form  $p_I^{-1}(U_I)$  for some open subset of  $U_I$  in  $X_I$ . These are the basic open sets, that is the first thing I am going to use here where I is itself a finite subset of J, ok? There must be some such thing and  $U_I$  must be non-empty, open inside  $X_I$ , I must be finite.

Take a point  $w_I$  inside this  $U_I$ , this  $U_I$  is non-empty right? Now look at this point  $(w_I, z_{I^c})$ , what is the meaning of this? All the *i* coordinates for *i* inside *I* are  $w_i$  and if *i* is inside  $I^c$ , then it is  $z_i$ . So, that is the meaning of this point, we have defined this one.

This point is clearly inside  $p_{I^c}^{-1}(z_{I^c})$  because its  $I^c$  coordinates equal to  $z_{I^c}$ . Also, this point is inside  $p_I^{-1}(U_I)$  because this  $w_I$  is inside  $U_I$ . So, it is  $p_I^{-1}(U_I)$  ok so, it is in the intersection, but the first set is contained inside  $A_z$ , the second set is contained inside where? The second set I have written just now, it is contained inside U.

So, the point is contained in  $A_z \cap U$  that is the end of the proof why? Because starting with U, I have shown that  $A_z \cap U$  is non-empty ok. (Refer Slide Time: 21:16)



Here is a picture if you want a picture to explain what is going on. Whatever I have told here so, this is an arbitrary point z right, then I have bunched up this  $X_I$ , I is a finite set of indexing sets right suppose it just  $X_1$ , then this looks like the x-axis and the rest of them are y -axis, the rest of them are  $I^c$ ; I have put. So, you have divided the entire set into  $I^c$ ; I and  $I^c$ . So, draw this this is one plane, this is a finite product of finite things right so, this is connected.

Now, if you take an arbitrary point w inside this  $U_1$  inverse image, this dot dot  $U_1$  ok is  $p_{I^c}^{-1}(U_I)$ . So, if you take any point like this here  $p_I^{-1}(U_I)$ , you can project back here actually this  $y_I$  have started with a point here w and this is  $w_{I^c}$  of that length, this y is nothing, but  $w_I$  here in the notation ok.

Its other coordinates are just the coordinates of this point, you can think of this as y coordinate here, y coordinate of z and this point y are the same ok. So,  $I^c$  coordinate of these two are same. So, that is precisely the point here which will be in the intersection, this was my arbitrary U ok. So, every U contains such set is what you have to use namely what are the base for the product topology that is all ok.

So, you see the proof that product is connected has just two ideas, one is you look at a point and then, take all these coordinate planes, finite coordinate planes passing through the given point. So, I am using the terminologies motivated from  $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$  and so on ok, that is the only way you can picture it, you can imagine coordinate planes and so on ok, there are no planes here after all, all are arbitrary topological spaces ok. So, that set  $A_z$  is what it is dense. So, that is all you have to remember. Proofs are not at all difficult ok.

So, let us do the other things next time. This result itself is something substantially good we have done. Other properties we shall do next time.

Thank you.