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Welcome to Module 42 of Point Set Topology Part 1, so today we will take up study of

Properties of Topological Properties. So, recall that we have defined a topological property

by which we mean something that if it is true for one space then it must be true for all spaces

which  are  homeomorphic  that  space.  Such  a  property  is  called  topological  property  or

topological invariant.
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Then we made  a  definition,  this  also  I  am recalling,  that  a  property  is  called  smallness

property, if whenever a topology tau on a given set   has it then all topologies  smaller

than  should also have the property. Similarly, a largest property is one whenever  has it

and  is a larger than , then  should also have it.  
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Most of the topologies that we have studied in this chapter,  they belong to the first type,

namely,  those  which  are  smallness  properties,  except  perhaps  the  first  and  second

countability. These two are not exactly of this nature I have already told you. So, next chapter

we will consider those which are likely to be called as largeness properties, some of them just

like  first  and  second  countability,  there  will  be  some,  which  are  not  exactly  largeness

properties strictly as per our definition.
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At  present  whatever  the  concepts  that  we  have  studied  so  far,  like  path  connectivity,

connectivity, what we would like to do is to look at them one by one, check whether the

property for a space will automatically imply the same for all subspaces, whether it will be

true for quotient spaces, when this property holds for several of them, whether it will be true

for the product of these spaces and so on. So, these are the questions which keep bothering

us, so we would like to carry out this study in a systematic way as much as possible to begin

with in one single place. 

Later on, we cannot do all of them at a single place anyway, as soon as a new topology comes

we  can  keep  asking  these  questions  for  that  particular  topology  according  to  the  time

availability or our mood ok? And then there are many other kinds of questions also you can

ask. Whether, it will be persistent on taking close subspaces or open subspaces instead of



arbitrary subspaces. So there are modifications of such questions also. So, this is what I mean

by studying the properties of the topological properties.
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So, let us tentatively make a few definitions. If we need more and more definitions or modify

these definition we can keep doing that. First property is hereditary. So,   is a topological

property,   is called hereditary, if whenever  possesses it all subspace should possess the

same property. It will be co-hereditary whenever  possesses it all quotients of  should also

possess it. 

Similarly for `product invariance, there are three different versions here. One is finite product

invariance,  another  is  countable  product  invariance,  the  third  one  is  product  invariance

without  any  quantifier,  or  qualifier  ok,  so that  is  more  general.  What  is  the meaning  of

product invariance, whenever a family depending upon finite or countable family of spaces

 is are given, such that if each  has the property then the product should have the same

property and conversely if the product has it then each factor should also have it ok?

Sometimes people do not bother about the converse part--just  one itself is  called product

invariance. And then the converse one they may call it factor invariance. Once again there are

variants of these concepts that is what I wanted to tell you. 
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So, depending upon the author and the concepts and you know what exactly you want to

study and so on ok. There are variants like I already told you, hereditariness also. Instead of

general subspaces, you can just take open subspaces, you may call it open hereditary or it

may be true for only close subspaces then you may call it a closed hereditary and so on. 

So, they are weaker than being hereditary. So you may call these two together as weakly

hereditary.  But then just calling weakly hereditary,  there would be still  ambiguity in this

definition. Similarly for co hereditary under any quotient map if the property persist then you

may call it as co hereditary, but suppose it is only true for open quotients, then you may call it

ah weakly hereditary or some other people may call only closed quotients, then they may call

it weakly hereditary and so on ok. So, there are various versions of this one.
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So, here is a table ok, which will give you fairly a good idea of whatever you are going to do

right now and a little more in  this chapter and maybe in the next section and so on. So, here I

have listed seven of the properties that we have studied, so far: compactness, Lindeloffness,

first and second countable, separability, connected and path connectedness. Then these are

the  three  properties  of  theses  properties  that  you  would  like  to  study  hereditariness,  co

hereditariness and productivity.

Within productivity there are 3 types actually finite productivity, countable productivity and

arbitrary productivity. So, this being little more complicated we will do it next time. Today

let  us  see  whether  we  will  cover  this  much  ok.  So,  what  I  will  do?  First  I  will  take

hereditariness, for all these things one after another. Then we go to co-hereditariness one after

another  ok.  So  let  us  look  at  compact  spaces.  You already  know that  closed  interval  is

compact, but the open interval is a subspace which is not compact.

So, compactness is not hereditary on the other hand you have also proved that every closed

subspace of a compact space is compact. We have already proved such a thing right? So that

means, it is weakly hereditary. 



Exactly same thing goes for Lindeloffness also. Every closed subspace of a Lindeloff space is

Lindeloff right? Have you seen that Lindeloffness is not hereditary at all? Do you remember

when we have done that? Can you see it easily with some example, what is to be done? Take

any  Lindeloff  space,  so  that  there  is  a  subspace  which  is  not  Lindeloff.  What  is

Lindeloffness? Every open cover should have a countable subcover ok. A space which is not

Lindeloff, we have seen that. You can take for example, an uncountable set and a discrete

topology on that.  That  is an easiest  example of non Lindeloff  space ok? Now instead of

taking subspaces you construct a larger space by putting one extra point namely a Sierpinski's

point ok. 

As soon as you put a Sierpinski's point what is the meaning of that? That extra point, the only

open set containing that point is the whole space. Therefore, when you take an open covering,

in fact every open covering of this space must have the whole space as one of the members.

Therefore, that singleton subspace, the set that will be a finite subcover.  You take that  

member  that is a cover. So, it is automatically Lindeloff. So, this looks like as if we are

cheating, but that is, you know quite legal, example of a Lindeloff space such that a subspace

is not Lindeloff ok? 

You can cook up more pleasant examples or more unpleasant examples also if you like ok? 
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So, let us keep going on. First countable and second countable now. It is easy to check that

both first and second countability are hereditary. Let me do it for second countability first

countable you can do in exactly same way. 

Take a countable base for a topology ok? Now take a subspace. What are the open subset of

the subspace? Take any open subspace in the original space, intersect it with the subspace.

Suppose   is a subspace of  , and   is a countable base for  . Take any member of  

intersect it with , you know, collect all of them that will become a countable base for the

subspace  ,  that  is  all,  ok? So,  up till  here  we have  come  that  countability  and second

countability are hereditary. 

Separability, connectivity, path connectivity they are not hereditary. Connectivity and path

connectivity you know already ok. You take an open interval remove a point, it is gone, the

connectivity is gone right? 

So, subspaces hardly need to be connected for a connected space and path connected space.

But for a separability how do you do that? Why separability is not hereditary? Remember

separability is what?



Student: Countable dense set sir.

Countable dense set. When you go to a subspace this is dense set may go away that may not

be in the subspace right? but that does not mean that there is no other countable subset which

is not dense. So, how do you give an example of a separable space that has a subspace that is

not  separable?  So,  perhaps  you  may  try  to  do  similar  to  what  we  did  in  the  case  of

Lindeloffness. Start with a non-separable space and then cook up some bigger space which is

separable. You know that may work now.

So, there are ideas you have to, you have to sometimes think about these things right. So, I

have given you an example here remember we had this semi open interval topology, in which

the basic open subspace are of the form ,  closed  open. So, this was left semi interval

topology  on the set of real numbers ok.  This space is separable. you can check that again

the set of rational numbers is a dense set ok? Though this topology is larger than the usual

topology on .

So,  is a dense subset and so this space is separable. Once you have a dense set in , say 

is a dense set then  will be dense in , so  is separable ok. But now I look

for a nice subspace here namely the anti-diagonal. The line given by   ok. In the

usual topology this is homeomorphic to  , but in this product of semi interval topologies,

What happens? This becomes a discrete space. Every point is open now. 

Why? Because given any point  , you can take interval   and  ,

take their product. So, this is half half closed rectangle sitting on the point  Exactly

one corners of the rectangle, will be on   ok. So, this rectangle half closed rectangle

will be an open subset of the product space, its intersection with the line is open in the line,

but this intersection is just the singleton .  So, all the singletons are open. That means

it is discrete. A discrete set of cardinality uncountable right? So that cannot be separable ok? 

This example is quite a peculiar one. I will be using it again ok? In the next chapter. So, as I

have pointed out, connectivity and path connectivity they are not hereditary that is seen easily

ok.
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Now, let us go to co hereditariness compactness and Lindeloffness. We have seen that the

quotients are also compact and Lindeloff ok. If you would not remember it you can just argue

as follows: Take an open covering for the quotient, inverse image will be an open covering

for the original space, it given a finite covering and come back ok? So that is it. 

So, 3 and 4 are what? First countability and second countability right. So, these are weakly

co-hereditary, in the sense that if it is an open quotient, then  is second countable implies 

is second countable. Once again it is very easy to prove. What you have to do? Start with a

countable base , take the collection  where   ranges over this  . Because   is open,

 is open here. Now you can verify that this is a base for the topology on . So, same

thing works for local base at a point also alright. 

So, open quotients are preserving the first countability and second countability. So this is

weakly  co-hereditary alright.  In  general  what  happens?  Once  again  we have  to  cook up

examples  here  ok.  If  you  do  it  for  second  countability,  for  the  whole  space  or  just  I

countability, for a single point, the idea and arguments will be more or less same ok. So, I

will prove it for now this time first countability ok? A space which is first countable but the

quotient is not first countable. 



Quotient means what now? General quotient not open quotient, open quotient will be first

countable ok. All that I do is to take infinitely many copies of   disjoint copies, is it first

countable? Any first countable space if you take any number of them and take disjoint union

it will be still first countable, the disjoint union does not disrupt local properties alright.

So, it is first countable, now what I do? I construct a quotient of this by identifying all the  in

each  copy  of   to  a  single  point.  So,  you  can  name  them  as

 and so on if  you want ok, these are the copies of  

right. Now 0 cross n all of them will be identified to one single point. We denote it by . No

other identifications. This is all ok? So, equivalence class is what? Whenever it is   cross

something it is equivalent to  cross anything. All other points are singleton classes. So, that

is the quotient set. Give the quotient topology.

What is the quotient topology? Something is open in the quotient space if and only if  inverse

image is open in the disjoint union of all these copies of  ok. 
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So, that is my example here  equals disjoint union of , countably many copies of  and

 to be the quotient space obtained by identifying all the s to a single point then  is second

countable but   is not first countable even. At that point  , which is the class of all the 0



cross n, ok? The first countability fails ok? So, if it is not first countability cannot be second

countable, so it this gives you an example for both of them ok.
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How to see that it is not first countable? That is also easy. Suppose we have a countable base

 of  our  neighborhoods  of  ,  ok?  Local  base  for  this  quotient  space   ok.  Let  us

tentatively denote this quotient space and the quotient map from  to  by  alright. Given

any , take , then I can choose an interval  in the  copy of  around , so that that it

is so small that this  , the image of that line ok, that is not contained inside this

.

Do the same thing for all  and so on, you look at the corresponding  and

then go to the corresponding copy of , there you choose a neighborhood very small, so that

that neighborhood does not contain this that is all ok. So, once you have got for each , this

interval  you take  to be this disjoint union of all the ’s, in the disjoint union ok. When

you take  ,  that  will  be an open  subset,  because  the inverse image will  be precisely

disjoint the union of this ’s, ok.

So,   equal to union of all these  's,   is an open subset containing the point  , you

know, the class of . But because of the choice, none of the ’s will be contained inside 



ok? If it is a base then some  must be contained inside . For every open subset containing

, there must be a member in the local base which goes inside that. Therefore, this is not a

local  base.  In  fact,  what  we  have  proved  here  is  no  neighborhood system at   can  be

countable or take any countable set of neighborhoods, it cannot be a base that is what we

have proved.
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Once again 5, 6, 7: what are they? Separability and path connectivity; and path connectivity

right yeah, so separability is easily seen to be co hereditary you see it was not hereditary, but

it is co hereditary. Why? Take a countable set which is dense, go to the quotient take the

image that will be also countable set, claim is that it is dense. Very easy. Because all that you

have to do is take an open set in the quotient space you have to show that it intersects this

image right? 

Go to the inverse image that is an open subset in X, so that will intersect the original dense

set that point will be in the intersection of these two, the image of that point will do the job,

that is all ok. 

6  and  7:  path  connectivity  connectivity:  we  have  seen  that  image  just  the  image  of  a

continuous  function  itself   has  this  property:  Connected   image  will  be  connected;  path



connected  image will  be  path connected.  So,  they are  a  bit  more stronger than being co

hereditary. 

So, the 2 columns we have seen except a few things like 1 or 2 examples like this we had all

these things we had seen. So, this is like a summary of whatever we have done so far, except

this  example and this  example  ok. So, so now we come to the third column here  about

products. What we have seen is product of finitely many compact spaces is compact. Have

you seen that?

Student: Yes.

For, finite products, it is true, but productivity as such ok; means that it should be arbitrary

product also. So, here I am saying yes, but we do not have a proof for arbitrary products not

even countable products, finite products you know. Similarly for Lindeloff we do not know

ok? For countability, first countability, again finitely many copies yes. It is ture even if you

take countabily many copies ok? But arbitrary product we do not know ok? Similarly, for

second countability.

Separability is more mysterious, what we have done is for path connectivity we have seen

this one. Remember path connectivity is easy. For connectivity also you have seen only for

finite products we have seen right? So, partly many of these things we have seen, but we do

not know all the full answers, none of them properly, right? So, we shall take up this one next

time alright. So, let us stop here.


