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Welcome  to  Module  41,  today  we  shall  take  up  three  more  interesting  properties;  first

countability, second countability and separability. Once again, we go back to metric spaces

for  motivation,  especially  the  Euclidean  space  itself.  So,  these  properties  just  like  path

connectivity,  connectivity,  compactness,  Lindeloff,  etcetera,  they  can  be  classified  as

smallness  properties,  but  not  exactly.  We  have  given  a  formal  definition  and  this  first

countability and second countability does not fall into that though separability does.

Now, why we are combining them? Because they are often going hand in hand. That is why

you are combining them.  But nevertheless there is some vague feeling that these conditions

put some restriction on the size of the topology, you shall see why ok. And it is better to leave

it like that instead of getting into formal definitions. 



So, what are we going to observe here, first let me take any metric space ok. The base for a

metric space topology is: you take the collection of balls of radius positive at all the points

right?

Suppose you are fixing one point and then looking at  all the neighbourhoods of that point.

Then instead of taking all the balls of positive radius you can simply restrict yourselves to

balls of radius , balls of radius  You know wherever the discussion of

neighbourhoods is  involved only these balls  will  be sufficient.  So,  this  idea leads  to  the

notion of first countability.

(Refer Slide Time: 03:02)

With the usual topology on , we know that the set of rational number is countable as well as

dense subset. The same thing is true for all Euclidean spaces also, only thing you have to do

is you take all points such that all the coordinates are rational. That is also a countable set and

it will be dense inside  ok. So, this gives you another notion which is called separability

ok. Before going to the third one, let me state a theorem here for metric spaces and then that

will suggest the third definition.



(Refer Slide Time: 03:48)

Start with any metric space with a countable dense subset  . Just like  , but now I am

generalizing it for any metric space. All that I want is a countable dense subset similar to  or

points with rational coordinates in  and so on ok? With this much of hypothesis, I want to

conclude the following thing. Then there exists a countable base for the topology on  ok?  

 is a metric space. So,  is a metric and the topology  has the property that it has

a countable base. In particular, all  Euclidean spaces have countable base. So, what does it

mean, it means that every open subset is arbitrary union, but of members coming from a fixed

countable set that is the beauty.

So, that already puts a lot of restriction on the topology, it does not say, remember, it does not

say that number of open sets is countable no, because you are taking arbitrary union, but now

all the open subsets are unions of members from a one single family of open sets that is the

countable base ok. So, that is quite a strong condition. 
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To prove this one, it is one line proof: Put  equal to collection of all balls of radius  not

at all the points, but only at the points of , where  is a countable dense set.

So,   is inside   is inside a natural number ok, this is a clearly a countable collection,

because  is a countable set and the set of natural numbers is also countable set. So, there are

two different variables here, but   is a countable set. This collection   is a base for a

topology. That it satisfies (B1) and (B2). This does not need any extra you know hypothesis

you know this is this kind of things you have done. 

So, you must do that one ok, that they form a base. It means what? Once you take finite

intersection two intersection of two of them and a point there show that there is a smaller one

contained inside that at the point and so on. Conditions (B1) and (B2) you have to verify. So,

this part, I leave it as an exercise.

All these are open subsets in  right? Therefore, if you take the topology generated by  ok,

 that is contained inside  because  is a topology after all. So, what I want to show is

that   is  contained inside  .  So,  that  this  itself  is  the basis  for  ,  ok?  And this  is  a

countable set. So, that will end the proof. 
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But this is one line proof again. Let  belong to , and  belonging to , what I have to do I

must produce a member from this  such that  belongs to that member and that member is

contained inside .

So, choose  positive first of all, such that   is contained inside . We are used to this

one because every member of  is a union of such members where  is any positive number,

but once  is positive there is some  sufficiently large such that  , ok? Now  is

dense in , I am going to use that. So, instead of arbitrary , I am going to shift it inside 

ok? How? Since  is dense in , every open ball will intersect  that is all, because  is a

dense dense subset. So,  is non-empty.

Now, take a point   in this intersection. Then check that   itself belongs to   that is

contained inside . First part is obvious because  is inside this one means distance between

 and  is less than . So, it is symmetric. So,  is in . 

But  why  this  is  contained  inside  ?  Because  I  have  chosen  ,  use  triangle

inequality. Over. The gist of this is that we are going to take this as a definition: The property

of having such an   which is  a countable dense subset. This is going to be separability.

Having a countable local base at each point is going to be I-countability. 



This gives you a big thing namely there is a countable base for the whole topology, it is a

global base that gives you the third definition which we are interested in and call it second

countability ok. 
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So, we shall make a definition here. So, we will now study these three notions in the reverse

order. We say a topological space is second countable ok? Sometimes you just write II here

instead of `second'  ok,  if  it  has  a countable base.  Over.  A topological space is  set  to  be

separable if there exists a countable dense subset over. 
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Third one we will wait for it, the third one was the first one which you started with there, ok?

Let  us  make  some  observations  here.  Typical  examples  of  second  countable  spaces  are

Euclidean spaces. All that you have to do is consider the family of all balls with rational radii

and centres with rational coordinates, when I say rational coordinates all of the coordinates

should be rational ok. 

So, we can also see that finite product of second countable spaces is again second countable.

Because if you take a countable base ok countable base here members from here to cross that

one they will generate they will give you base for the product. So, countable cross countable

is countable again. So, finite products are II countable.

Every subspace of a second countable space is second countable. If you can generate all the

open  subsets  of  the  bigger  space  ok  when  you take  subspace,  look  at  the  intersections.

Suppose  is a subspace of , look at  intersection members of , where  is a base for .

That would be a base for  ok?

So, once again this property is very important in analysis, because it allows several countable

processes such as taking countable sums and integrations etc, because every open subset now

will  be  a  union  of  members  of  a  countable  family  right.  So,  you  can  take

 and  so on.  So,  any  opens  set  can  be  written as  an  increasing



union. So, all these things are possible ok. So, we shall first prove two easy consequences of

this definition namely second countability.
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I said second countable, the separability automatically comes here. So, how? Start with a

countable base for  ok. Let  be a subset of  which contains exactly one point from every

member  of this . One single point  for each  inside .  is the countable base for

, ok. 

Since I have chosen one point from each of them this   will be again countable. This   is

subset of  by the way ok? And is a countable set ok. Claim is it is dense,  is the whole of

. What is the meaning of  is a base? Given any point  and an open set  such that 

belongs to , there exists  belonging to  such that  is in  and  is contained in  ok?

But; that means,  is non-empty ok. So, that  will have a point inside  right? So,

 is itself is non-empty. So,  is also non empty. So, what we have shown here is

that  intersects every non-empty open subset and that is the density. 
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Every  second  countable  space  is  another  thing:  it  is  Lindeloff.  Remember  what  is

Lindeloffness? Every open cover has a countable subcover. This also is very easy, how? Take

an open cover. I must produce a countable subcover right? Yes or no? So, how do I do that.
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.



So, let  be some open cover for , but let us say  is a countable base for , because  is

second countable ok? Consider all members of  which are contained in some member of 

ok. So, that is a subfamily of , some of them may be too large, take only those which are

contained in some member of . That is all. 

So, call that collection  . Clearly,   is countable because it is a sub family of   ok? We

claim that  itself is a cover for . Automatically that will produce a sub cover. Because we

have taken only some members of  each of them is containing some member of .

So,  will be automatically contained inside the union of correspong members of , ok? So,

all that I have to show that  is a cover for  . So, let  belong to  be any point. Take 

belonging to   for some  because  's cover  . Since   is a base, there will be some 

such that  belongs to  and  is contained inside . This  is inside , by definition,

because I have taken those which are contained inside   here.  Therefore,   is contained

inside only those ’s which are inside  ok.

Now, for each member  of , choose one member  which contains  ok? That forms a

sub family of , which is clearly countable because I have chosen one for each  and they

are bigger subsets than original . So, they will cover . 
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Now, I come to the first countability. Look at a topological space  . So, I want to define

another concept here which I have not done so far namely, by a neighbourhood system or a

local base (there are two names for the same concept ok? Some people call it a local base,

and some others call it a neighbourhood system) at a point   belonging to  , we mean a

collection of open subsets   of   such that   is inside   for every   ok. So, they are all

neighbourhoods, and secondly, given any neighbourhood namely some open subset such that

 inside , there exists a  such that  is contained that. 

So, this part is similar to base ok, but everything is happening at a single point  that is why it

is called a local base that is all ok. Away from , this  is fixed, away from  this collection

may not have that property. Only for neighbourhoods of ,   belong to  you will have some

 which is contained inside . So, this is called local base ok?
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Clearly the collection of all neighbourhoods of a point forms a neighbourhood system. You

are very generous in taking all of them here, then there is no problem. But this system may be

unnecessarily huge and so, we are looking at cases when there are neighbourhood systems

which may be countable and that is the third definition for today.
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We say a space  is first countable at  belonging to  if it has a countable local base at . If

this happens at every point then we will say  is first countable. 

Now we said second countability implies separability. We can see that second countability

implies first countability also. Because if we have a global base which is countable, global

base  is  always  a  local  base  also  right?  Therefore,  second  countability  implies  first

countability. So, out of these three concepts, second countability is the strongest.

Student: Ok.
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Once again a typical example of a first countable space is any metric space. No need to take a

Euclidean  space  here.  Of  course,  Euclidean  space  are  first  countable  ok.  That  was  our

motivation. All that we have to do is to take balls of radius  at each point. Point is fixed,

take all the balls of radius  that will be a countable base countable local base at . 

Every second countable space is first countable that I observed already. The converse need

not be true. If that was the case, then we would not have two different definitions here ok?

Easy counter example is obtained by taking a discrete topology on an uncountable set ok? An

uncountable discrete topology cannot have a countable base. Think about that. Whereas, in a

discrete topology each singleton is an open set. So, I can just take that open set in every

singleton as a local base that is all. One single set will give you a  local base ok.

The importance of this local base is more or less due to the following fact. It allows us to

retain the notion of sequential continuity intact. Intact means what? Sequential continuity was

true inside metric spaces.  Now the notion of first countability is  coming from the metric

spaces. So, only that is the key there,  not the rest of the metric space structure. The first

countability is playing the role of protecting the concept of sequential continuity.



(Refer Slide Time: 23:54)

Let us see how. Let  be a first countable topological space. Then any function  from  to

 is continuous at  belonging to  if and only if  inside  converges to  should imply

 converges to , ok?

Proof is exactly same. One way is always possible you do not need first countability ok?

Now, if  converges to ,  is continuous implies  converge . This is always true

in any topological spaces. Conversely, suppose for every sequence  converging to , 

converge . Then how to show that  is continuous at ? The proof is exactly same as in

the case of metric spaces ok?
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So,  let  us  go  through  that  one.  I  am  trying  to  prove  converse  here.  Assume  that   is

sequentially continuous at   and not continuous at  . Then you will get a contradiction ok?

Not continuous at  means what? There exist an open set  in  such that  belongs to ,

but no open set  in  such that  belongs to  and  is contained inside .

Now, I apply this part no open set blah blah blah to each of these elements in the local base

here.  is local base at . Take  such that  is outside . After that you take

 that is an open subset containing  . So, take   inside  , so that   is

outside  .  It  may  be  ,  no  worries,  ok?  And  so  on,  take   in  the  intersection  of

, inductively, such that  is outside , ok? Automatically this implies 

converges to , ok? 

But , certainly this is very poor it is far away outside . So,  cannot converge to

. So, this contradiction proves the claim. 
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So, I have a few exercises here and a comment: Show that every subspace of a first countable

space  is  first  countable,  second countable  space is  second countable,  this  I  have already

explained. Same explanation is there for this one also. As an exercise you write down the

details.

In particular, deduce that a discrete subset of a second countable space has to be countable.

This is used in complex analysis. I do not know whether you have done this kind of things,

the  set  of  zeros  of  an  analytic  function  defined  on  a  domain  of  ,  right?  On open  and

connected subset of , it may be the whole of , it will be automatically countable. So, how

does one prove that? By proving that it is discrete. Automatically it will be countable.

Show that if  is a family of closed intervals of positive length which cover the whole of ,

there is a countable sub family of   which covers  .   is   here. If it is open intervals

which cover , countable family will cover because  is Lindeloff, ok? We have proved that

 is second countable and second countability implies Lindeloff right? So, open intervals

covering the whole of  will have countable subfamily covering . 

But here, I have closed intervals of positive length, you do not take single points. No single

points are allowed, ok, intervals will be of positive length that is all.  closed interval with



. Take such things then you will get a countable sub family which covers it also. So, this

you have to do is you know only in . This is a tricky thing.

On an uncountable set , let  be the co-finite topology ok. This is our favourite example. Is

 with cofinite topology a first  countable space? Is it  second countable? Is it  separable?

Check them because only if you check these things you will understand these these concepts

properly ok? So, that is all for today.

Thank you.


