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Welcome to module 40 of Point Set Topology, part 1. Today we will continue the study of

Compactness. I begin with one of the most important results about compact metric spaces as

important as the three big theorems that we have proved about complete metric spaces if not

more, ok. This may be even more important. It is called Lebesgue covering lemma.

Start with a compact metric space. Given any open cover , there exists a real number 

positive such that every ball of radius  inside  is contained in one of the members of .

So, that is the statement. Several applications of this are there even at the calculus level, right

in the beginning of Riemann integration theory and so on. Especially for the closed interval

, in the study of functions defined on , directly or indirectly you must have used this

theorem. 
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So, let us have a proof of this one which is not at all difficult. As soon as you have an open

covering  because   is  compact,  there  is  a  finite  subcovering.   is  contained  inside

 where 's are coming from the given open covering . If one of the 's is

the whole of , then there is nothing to prove. You can take  to be any number. Every ball

of radius  will be contained inside  which is one of the 's. So, that is nothing very great,

ok?

So, we may implicitly and explicitly assume that the complement of 's which I will denote

by  is non empty for  equal to  up to , ok? If one of them is empty, there is nothing

to prove. So, we are assuming that 's are non-empty. Now, consider the distance function

from  . Let us call it  . Recall what is  ? It is the infimum of all   where  

ranges over .

So, that is called the distance function and we know that the distance function is continuous

ok? Distance of a point , where  varies over all of , from a given set. This set is closed

subset which we will use soon. Right now any set will do, the distance function is a real

valued continuous function. Therefore,  you take all   and take the maximum.

That will be also continuous ok? So, let us call that .



Now, I use the fact that 's are closed. Therefore,  is , if and only if  belongs to . So,

this  is  where  's  are  closed,  that  is  used.  But   covers  the  whole  of  .

Therefore, if you take intersection of , by de-Morgan law that must be empty. So, if all the

's are  that would have mean  would have been inside the intersection, but intersection is

empty.

Therefore, given any  at least one of the  is not . Therefore, this  which is maximum

will be always positive, ok? It will never be  ok?  itself is the maximum of all the .

Now as a function on  this function is continuous and will attain its minimum on , why?

Because   is compact.  So, compactness is  used twice here ok? That minimum will  be a

positive real number because  is never .

This number  will do the job namely take any open ball of radius  wherever you take the

center. That ball will be contained in one of the members  ok. So, that is the

claim one of the members contains the ball. Ok? 

So, proof is very easy. If this is not true, what does that mean? A point   belonging to this

ball is not in  here means it will be inside  is complement of , right. So,  will be in

.

As soon as  is in , the distance between  and  ok will be bigger than , because 

is distance of  and  which is the infimum of all  ok. So,  is bigger than . 

Actually what we have shown here is given any  look at that index  for which  is equal

to  because f (x) is the maximum of these finitely many numbers; so you can select one

of them, right? For that index , the same  will do the job, that is  is contained in .

this is what we have proved. May not be very important to take note, but this is what we have

proved. That is all.

Look at  the way the argument goes.  First  you have some kind of a infimum here in the

definition of 's. Then you have a maximum in the definition of . Then again you take the

infimum of   itself. So, the proof of this already gives you another principle which can be



used in several mathematical concepts which is called mini-max principle. I have no time to

explain that one further.  Also it  is out of our way, but this is used in all sort of analysis

always ok. The proof itself is of importance here.
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So, we can make a definition ready to use in with this kind of situation. So, that we are able

to recall that concept very easily. Any positive number such that every ball of radius   is

contained in one of the 's is called a Lebesgue number of the cover . Start with any cover

if there is an  like this that  will be called a Lebesgue number. It is very easy to see that if 

is less than  of course, I have to take  always positive,

So, , then  is a Lebesgue number implies  is also a Lebesgue number. So, you can

take  the  supreme  of  all  such  values  and  call  that  as  Lebesgue  number.  But  that  is  not

necessary.  So,  in  practice,  we get  any  number  satisfing  this  property  and  then  call  that

Lebesgue number, alright ok. A metric space   which which this property that every

open cover has a Lebesgue number associated to it,  ok? That metric space is said to satisfy

Lebesgue property. 

Namely, If this happens for every open cover of , then we say  has Lebesgue property.

So,  in  this  terminology  what  we  have  proved  is  that  every  compact  metric  space  has



Lebesgue  property.  There  may be other  spaces  and other metrics  ok they  may have  this

property. We do not know whether that will imply that is compact. So, that is another aspect.

So, I am not going to touch that one here, but this is the definition. So, we can just work out

with this one. Lebesgue covering lemma is very important result in real analysis. 
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Let us  derive one immediate consequence from this one, namely another important concept

in metric space theory namely, uniform continuity, ok? In real analysis you have seen that a

continuous function on closed interval  is  uniformly continuous ok. So, that  result  can be

extended. By the way this result is very much used in Riemann integration theory so, so

uniform continuity itself is an important thing.
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Take any function on a compact metric space to another topological space and a continuous

one, ok. The assumption is  is compact metric space. Then given any open cover  of 

there exists  such that for every , we have  is a subset of one of the 's,

ok? The statement follows directly from the theorem, because all that you have to do is when

you have taken a covering  of , take 's, that will be a cover for . Then choose

this   to be a Lebesgue number for it, and then you have this property. So, that is an easy

consequence.

But why this is called uniform continuity? I will explain this, ok? So, if both  and  were

metric spaces then how do you define uniform continuity? Given , there exists a  such

that distance between  and  is less than  should imply distance between  and 

is less than .

That given ? But now there is no metric on . So, I have to convert that `given ' one and

that is converted into an open covering  here. If you have a metric space  and you have

 here you have all  balls that is an open cover for . So, that has been replaced directly by

taking this  now. These 's play the role of  ok all over the whole thing you have to talk

about in one single call, ok.



Then this  plays the role of  there is no problem. So, this  is independent of  you see, if it

is depending upon  that is ordinary continuity ok. So, this is the way the uniform continuity

is attained. 
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So, we shall  take a  break from compact  metric spaces now and go back to  the study of

compact spaces in general again. Now, I come to one of the important results what is called

the tube lemma or Wallace theorem. But, what I am going to do is, I am going to combine it

with another important result, which is not so central and do a bit of circus here, to give you a

characterization of compact spaces.

See our definition of compact spaces is what? Every open cover has a finite sub cover, just

one  definition,  whereas,  for  many  other  concepts  we  have  seen  that  there  are  several

definitions, right? So, such an important thing you should have different ways of looking at it

ok? So, here are two other ways of looking at compactness; compactness as a property that is.

Two characterizations, I am going to give now ok?

Before that I will recall that you might have by now you might have seen such a thing, but let

us look at this one. Give an example to show that in general projection map is not a closed



map. So, I still put it as an exercise, but since I want to illustrate the coming theme here so,

let me tell you that in general, projection maps from  to  or  are not closed maps.

They are open maps remember that, ok? While studying the product space we have seen it.

All the time we have used it also. So, what is the simplest example? There are many. The

simplest example is you know from  to  itself. Look at the hyperbola given by 

, ok? Its projection on the  -axis just misses the point  , nothing else. Therefore, it is not

closed right? That shows  is not a closed map. So, having said that now we come

to the characterization of compact spaces no metric now.
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So, I would like to call it, the whole thing, as Wallace theorem, But in classical, standard

books Wallace theorem is only one third or even one sixth of whatever we are doing here,

ok? I will tell you what it is exactly. Let  be any topological space, then the following three

conditions are equivalent. So, I have put deliberately the 3rd one here, that is,  is compact.

The other two are going to be equivalent to that. That is my aim. The first statement is: for

every topological space   look at the projection to the  coordinate from , that is a

closed mapping ok? Not just some particular  , for every topological space  , this should

happen ok?



The second statement is:  satisfies the following condition which is somewhat longer. So, I

have put this one carefully and made it very much visible. So, you should know this one this

is a very important thing which goes under the name tube lemma. So, for every topological

space , again  pick up a point inside  and an open subset  of  such that

the copy of  at  namely  contained inside this open set. So,  is an open neighborhood of

. Suppose, this is the situation. Then there exists an open neighborhood   which

may depend upon  such that the entire  is contained inside , ok? 

So, this is also very much used in analysis. So, this is a condition I want to say which will be

equivalent to  being compact. So, third statement is  is compact ok. 

The proof will go through not (1) implies (2) implies (3) implies (1) as usual, but I will prove

(1) and (2) are equivalent and (2) and (3) are equivalent.

So, that is why I have put this one in the center. 

(Refer Slide Time: 21:06)

So the proof of (1) implies (2),: what is the meaning of that? Start with this condition that

projection maps to every  is closed. Then I must prove this condition ok? So, start with any



,  a neighborhood   of   etc.  this part as well  as statement (1),  then I must

produce a  with this property, right?

So, take   to be the complement of  .  See,   is an open subset  of  .  So, take its

complement, that will be a closed subset of , ok? Now, use this property (1) and come

to  of  is a closed subset of  right. So, its complement in  will be an open subset.

So, where have you come?  was completely contained inside .

Therefore,   intersection with   which is the complement of   will be empty set.

That just means that the projection of  does not contain the point . Its complement  is an

open subset which contains . This is what I start with  is closed ok.

Now, take the complement of that  inside , that is an open set.  is empty

right? Because   was contained inside  . Therefore, this   will be inside this  

cannot be inside  that is otherwise this would be a non empty ok. Projection of  if

it is there then projection would be inside  , right. So, this is empty means now this   is

inside , ok.

So,  is a neighborhood of  right? That is what we are trying to prove here you see  is a

neighborhood of . And what I want to prove is  is contained inside , right? So, that

also comes freely here: look at any point  ok; suppose it belongs to . That means

that  is in  ok? The second coordinate projection of this one cannot be inside  because

you have taken   as the complement. But   is in   implies   is not in   ok; that

means,  is in the complement of that which is . So, otherwise it will be in . So, the

entire   is contained inside . So, that was an easy proof. Just some set theory. You

have to keep going up and down the projection map. Alright. So, (1) implies (2).
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Now, we will reverse the arrow: (2) implies (1): Namely take any space , have to show that

the projection map  to   is a closed mapping. Now, start with a closed subset   of

. Then   is closed this is what we have to show. Take the complement  , you

must show that this complement is open inside . In the same way did (1) implies (2), I am

trying to go backwards there, ok.

Now, take  belonging to . Again, these are all set theoretic steps, they are reversible. This

just means that   is empty. Now, you take   as   ok? To begin

with  is  closed. So,  equal to  in (2). Once you have this is an open subset

right the property (2) gives you a neighborhood  of , such that  is open and  is

inside .

So, it follows that   is emptyset. Because by definition  is  , ok.

Therefore,  is contained inside  because  is the complement ok. 

So, more or less you know if you choose correctly the notations every arrow can be reversed

here from (1) to (2). However, since this is somewhat complicated statement, we have written

an independent proof. So, (1) implies (2) and (2) implies (1) is over. 
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Now, come to (2) implies (3) and (3) implies (2). So, I first prove (3) implies (2): I save the

last  thing ok namely (2) implies (3) for the last thing that  is the theorem which is called

Wallace theorem. Sorry, this is the one which is called Wallace theorem or tube lemma 3

implies (2), (3) is compactness right yeah, (3) is compactness.

Compactness implies this one is a standard result which is called Wallace theorem or tube

lemma, ok. So, what I have done is I have made it into if and only if along with another

condition here ok. Let us prove this one.

Let  be compact. We have to prove  satisfies this property  : Wallace property I have

denoted by ,  for Wallace ok. So, that entire property we have to prove.

So,  what  is  the  meaning  of  property  proving  I  have  to  start  with  the  hypothesis  of  the

property? Let  open, this much we have to start with. We have to find 

as required. Namely  open such that  such that the whole  is contained inside

. That is what we have to prove. For each , we can find an open subset  ,

 in because by the way  is fixed here,  is the variable here.



But,  is inside . So,  open in  and  is open in  ok? Open subsets such

that   is in . This is the definition of the product topology, right. These are

the basic open subsets . Since  is open there is a basic open set. The basic open set

looks like the product. That is all I have used:  is an open subset containing , ok.

Here only  varies  is fixed as  varies these 's will cover . That is an open cover.

Now, use the property that  is compact, get a finite cover , ok? All that you do

is take  equal to intersection of all these 's, no intersection of corresponding 's.  So,

 are all neighborhoods of , take the intersection that will be neighborhood

of   and that will do the job.

Because now take any point  here ok? Now,  means  is in all the 's right. 

is in one of the 's which one you do not know. Suppose, it is in , then  will be in

 that is inside  over. So, that is why we have to take the intersection here ok. So,

the proof of Wallace theorem as such is just that much only ok, this (3) implies (2).
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Now, finally, I come to (2) implies (3). Pay attention to this ok? Because many expositions,

many books do not have this theorem, definitely not this proof, alright? Now, I have to prove

that the space  is compact by using the condition (2), (2) implies (3) means that ok. So, start



with any open cover for . How to use (2), so that this is going to give me a finite sub cover?

Condition (2) says for every  something is true. 

So, I must cook up some, you know, some nice space   nice means what? A friendly one

which will give you something ok? A space  such that when I apply this condition to that 

(of course this condition is true for every ), it will give you something. How to use that?

You have to cook up some . 

So, that when you use this condition that it should give you  is compact ok. So, having said

that much I just go ahead with with the proof. How I got this one. Start with an open cover 

for the given topological space . Now, go to the power set of . Now,  is going to be the

power set of  and I must give  a topology. On this power set of , ok?

So, the open subsets of power set of  will be what? They will be collections of subsets of 

, ok? It is it is a subset of the power set of ,  a subcollection of power set of . So, you have

to be careful here what is going on. We shall construct a topology and then take   as this

space in the hypothesis, to arrive at a conclusion that  admits a finite cover. So, this   is

going to be depending upon the covering . The underlying space is always , the power

set of X.

But,  the topology I choose will  depend upon the covering  ,  ok? That will say that this

covering has finite sub covers that covers ok. So, that is the trick. For any subset  of , let

us make a notation here  means the collection of all the super sets of , collection of all

supersets. Everything which contains  and of course, subsets of . All subsets  of  such

that  is contained inside , that is the notation .

For instance, if  is empty what will be ? It will be the whole of , all the subsets of

. Every subset contains emptyset, right? So, empty plus is the powerset itself. Similarly, if

 is , then what will be ? It will consist of only one element namely  itself. It is a .

You remember that it is not  , it is set containing  ; whereas,   is empty,   is all the

subsets of  the power set of  and it is not , ok? So, that is the convention here ok.



Now, let  be the family of all  where  ranges over this open cover ok. This collection B,

I do not know what property it has, it does not matter. Take this as a subspace for a topology

. Any collection of subsets of a given set, this time the given set itself is   ok? That

will generate a topology, the smallest topology containing  as a subbase.

So, I am denoting by . It is nothing, but  that we have earlier used in the notation. So, this

is a topology on . That is what I am interested in now. Clearly it depends upon , ok? 

(Refer Slide Time: 36:59)

An important point to note is that  is in contained non empty member of . Take an open

subset of  ,   will be always member there,  why? Because you look at  .  Of course,

empty set does not have, empty set is also there in every topology right. Take any non empty

set. look at this  all super sets. So, in every  that  is there.

So, when you take subbase remember you have to take finitely many members in the subbase

and then take the Intersection. That will also contain . Then union of course, will contain

. So,   is in every member ok? Other than the empty set ok. So, I have taken  as

 alright. 



So, having chosen , what is your ? An open subset of ? It is equal to the union of

all those which look like , where  is a member of , ok? That is an open subset of

.

So, this is going to be a subset of   ok, then clearly   is an open subset of  .

Now, singleton  is always in the second factor  here for all . Therefore, what you take

here  is there, but when you take the union where  ranges over this , that covers .

Therefore, what happens this entire  is contained inside . So, this is the situation

of the condition , Wallace condition.

Given this little  is a point of . Remember that ok? And  is contained in ,

 open. What does it give you? It gives you a neighborhood  of the  here, which is 

here such that   is contained inside  . So, that is the conclusion of (2)

alright?

So, after cooking up this  which is a topology on the power set, I have used that condition

(2) to get this neighborhood . Now, I want to say that this will give you a finite cover out of

. Can you see how finite cover comes? That is a trick here. That is a very strange thing.
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Even now you may not see why the finite cover comes ok. The point is that  here, this is a

sub base. What is the meaning of subbase for a topology? Given any point belonging to some

open  set,  then  there  will  be  finitely  many  members  from   such  that  their  intersection

contains the point as well as contained in the given open set, right. A basic open set out of

this one is finite intersection of members of this one. So, that is what I am going to use here.

 is contained in , right. Right now I will replace this  by a basic open set,

intersection of finitely many members of . But in this statement I can replace it in (26) this

this statement I can replace it because this  will be inside this one and this is contained

inside . So,  will be also contained.

So, instead of this one I can write this one, that is all. I am writing I can write the \  as

 to make it simplify. In other words I am getting another equation here namely  is

contained inside  cross this intersection contained inside  ok? So, (26) can be read with 

equal to intersection of , where  range from 1 to n. 

Now, you verify another property of this plus the supersets of  ;   is  .

Something belongs to this one means, it contains both  and  . This is a subset of  ,

members of this one are subsets of .

If it contains , it is here it is contains  it is here. If it contains  and , it contains .

So, it is here and conversely any set which contains   will contain both   and   and

hence in both  and . So,  is the same thing as . 

So, this happens for every member. In particular it happens for the members of  also. So we

put  equal to union of 's. See this , you have got a finite union. Now, you

take , ok? It follows that this  is equal to  ok. What was ? I forgot there is

no  here.

Student:  is  here.



But, what is ?  is union of 's. Apply this one inductively. So, what do you get? For two

of them you have this, you can do it for n of them ok? So,  is the intersection of 's, that

is . So, this  was  here, that is all. So, this is a typo this must be  that is all I wanted

ok by this notation if you look at the intersection of  is the with the same thing as taking

union of these and then take the plus. So, this  is , ok.

So, it remains to show that   itself is  . That will prove that this open cover has a finite

subcover. Since  was an arbitrary open covering, that will prove that  is compact ok? So,

that is the whole idea. So, I have to show that these , they cover , ok.
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So, look at , ok? This is member of . Remember what was . Whatever G is,

 contains all those members which contain . In particular  is there in , ok? So, this is

a member here   in  , alright. So, what is the meaning of this?   will be inside  ,

because the whole thing was this  is , that is what I have used here.  is

contained inside  by (26). 

So, now come here, yeah. So, this implies   is inside  which is same thing as  

belongs to  for some , right? Just go ahead what was ?  is the union of all

this. So, it must be inside one of the ,ok, for some . What is the meaning of



this? This is an ordered pair:  is in  and  is inside . Means what?  is inside  means

 contains .

So,  is in  and  contained in  for some . Therefore, all of  is belongs to . Start with

any  here, ok? Then you go through this one it shows that it is inside . Therefore, this  is

contained inside , but  is a subset of  after all. So,  is  ok.

In some sense this has the magic similar to Furstenberg's proof of infinitidue of primes. The

key here is  the passage from arbitrary to finite comes only because the topology has the

property that such family you know generate topologies by taking finite intersections first and

then go into the arbitrary union. That is all. There is no other way I can explain this one ok?

Suddenly you get finite cover out of nohwhere.

In the definition of compactness,  we have put the finiteness ourselves.  Now, we have to

produce it right? to understand why and what is going on? So, you have to choose, you know,

properly thought of topology which has something to do with the  open cover here you know,

the given open cover, yeah.

(Refer Slide Time: 49:42)



So, having said that, let me  again repeat a few things which I have told already. Usually (3)

implies (2) of this theorem is known as tube lemma or Wallace theorem. This itself is a very

subtle result and it is very useful also. For example, we can derive theorem 3.64 from it. So,

this I will leave it as an exercise to you, the uniform continuity etcetera. It is useful in many

other situations as well ok.

There are other proofs of (1) implies (3). See, now we have all three are equivalent, right. So,

this all the three are equivalent. How I have proved it? I have proved (3) implies (2) and (2)

implies (3); and (1) implies (2) and (2) implies (1).  So, some people you know classically

have proved that not very classically this is a modern approach now (1) implies (3) using

ideas of nets and filters. These things you can find in many books, ok.

Proof of (1) implies (3) by using nets or filters, what are called as ultra filters actually, also

produces this in a magic way, just the way this proof has produced it ok. The nets also give

you they pretend to explain it, but it  is still  some kind of a mystery only, how the proof

comes. 
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So, that is one thing I wanted to tell you whereas, the proof that I have given here of (2)

implies (3) namely from Wallace condition producing the compactness, this seems to be new

I have not seen it anywhere, ok.

Now, in part II of this course, I plan to give a not so difficult proof of Tychonoff's theorem

namely,  arbitrary product of compact spaces is compact using (1) implies (3) of this theorem

along with principle of transfinite induction. So, this transfinite induction takes some time,

that is why I have put it in part II. Otherwise I could have done it right now also ok. So, that

is the thing I wanted to tell you.

So, next time onwards, we will take up some other properties namely countability conditions,

separability and so on.

Thank you.


