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Last time we introduced compact spaces and Lindelof spaces. Today in module 39, let us

discuss  Compact  Metric  Spaces.  In  fact,  last  time we did  not  have  any  examples,  why?

Because, now we will have plenty of examples, naturally ok without without spending any

more time. So, let us come to compact metric spaces. Earlier,  whatever you have done with

metric  spaces,  we never use the word compactness  right? Now, we will  bring it  and get

familiar with the metric spaces themselves. 

In a metric space every compact subset is closed and bounded; you see I could not use closed

and bounded words in an arbitrary topological space right? As soon as I have a metric space,

I can use them and suddenly a compact subset is closed and bounded.
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Let us go through this. Many of these things you must have seen at least for  or . But,

now for any compact metric space. The proof will be similar, indeed almost same. So, I have

to show boundedness as well as closedness right? Fix a point  belonging to  and look at

all open balls , of radius n and center at . 

Every  point  in   is  at  a  finite  distance  from  ,  right?  Because   is  some  finite

number. Therefore,  you can always choose   large enough so, that whatever  , you have

taken that will be in the open ball centered at  and of radius . 

This means that,  is contained in the union of all these balls. So, this is an open cover of 

ok. Therefore, it is a cover for our subset  also which is compact. That means, what? There

is a finite sub cover for . So,  .

For  some   what  does  that  mean now? If  you take  large  enough  ,  bigger  than all  the

 ok? That   will  contain all those other balls  smaller balls of smaller

radius, because all of them are centered  . So, the subset   is contained inside a ball, that

means it is bounded already; that is all boundedness is. That precisely shows  is bounded

ok?



Now, we have to show that  is open; so, take a points  in the complement of  ok? For

each  inside ,  put , it is some number I am going to put what is it? It is equal to 

ok. 

For each  inside , I am putting  equal to  where  varies over , and  is in the

complement of  that is fixed. For each , look at the  that is a positive number, because 

and  are different.

Now, you take  ball around  ok; vary , what you get? You get an open cover for  right.

 is compact; so, you get a finite sub cover that will be . Union of

these finitely many balls will cover . Now, you take the minimum of all these ;

there are finitely many positive numbers, take the minimum ok let that be  . Now, look at

.  was in the complement of . Claim is that  is contained inside , ok?

To work out this one, all that you have to do is, take a pencil and a paper and just plot your

points here one is some , some other point, and there is some finite cover and so on right.

You have to do that for understanding this thing, I  am not going to do take that kind of

trouble here ok. I want to finally get the truth out of this one just by logic, no pictures ok;

only that way you will learn, you know, your learning of points set topology will be strong. 

So, all that you have to do is use triangle inequality to show that  is contained inside 

complement. In other words, if you take some  such that distance between  and  less than 

, you should show that  cannot be inside . That will follow if you show that it cannot be in

one of these balls; then it cannot be inside . So, at that level, I will leave it to you to verify

that.
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The importance of compactness stems from the so called Heine-Borel Theorem which states

that a subset of the Euclidean space is compact if and only if it is closed and bounded. We

proved that every compact space inside a metric space is closed and bounded; the converse

holds for Euclidean spaces ok. So, that is the classical result which goes under the name

Heine-Borel Theorem ok; so, you might have learned it in analysis course, but let us do it

here just in case you have not learned that yet.
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We begin with . Inside , we want to say that the closed interval  is compact, this also

you must have learnt, but I will redo this one here.
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So, closed interval is compact is what I want to show. Take an open cover where all these 's

are open subsets of . Nothing more is assumed ok;  is a closed interval, these are open

subsets of , union covers , ok.

Now, I define a subset  of this interval all points  inside , such that, the closed interval

 admits a finite sub cover from . You see  is also covered by the same family. So,

make this hypothesis and then put all  those   which satisfy this hypothesis   must  be

admitting a finite sub cover. Put that  inside this  ok, each element in  is in one of the

's in particular  is inside one of the 's right. 

Say,  is inside , it follows that there is some  such that  is contained inside

 by the definition of open subsets in  ok. Actually,  will be there, but I do

not need  part here; because, I am working in the closed interval  ; so, this part is

contained inside . Once this is there ok, everything up to  satisfies this property; therefore,

this entire you know half open interval is contained inside . 

In particular  is non empty right? Right up to , some positive part here, not just a

will be already inside . 

Now, put  equal to supremum of ; since  is non empty, this is a finite number alright; the

least upper bound has to be inside   anyway. It is enough to show that this supremum

belongs to  and it is equal to . Understand the statement what I want to prove?  admits

a finite cover; if that happens what happens to  ? This entire   will be equal to   and

conversely.

For that  itself is in  is enough; I want to show that this  is in  that is the same thing as

saying that  here admits a finite cover ok. So, what I am trying to say?  is inside  and 

is equal to ; so, I am proving it in two stages. Finally, I want to prove  equal to  right; so,

first I will show that  is inside  and then  equal to ; so, that will end the proof alright? So,

let us prove this. 



First of all, since  is already in , supremum of  will have to be bigger than .

So,   is bigger than   and being the supremum of a subset of  , it will be in   ok?

Also  is contained as , because  is a closed interval ok; it is a closed subset.

Therefore, there is some member say  belonging to , i.e., in this family such that this  is

inside one of the members that is all. I am calling it , not ; you see  was used already

here. So,  belongs to .

Choose  such that   is contained inside . So, that is again the

property just like this one here, some open interval around  must be inside , because 

which is an open set and  is inside  alright; nothing very great, I have done so far ok. Once

supremum is inside  is covered by this family, so, I am taking one of the members

here to which  belongs to. Now, you make a nice observation to start with.
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Namely, the property of the supremum; if you take anything smaller than supremum, it will

be inside the set ok? There must be an element here ok. So, it follows that  must be

inside ; if this is not inside , then  cannot could not have been the supremum of . So,

this is definitely inside  ok; where  is some positive number, it has been chosen such that

this open interval is inside . 



So, once it is inside , what does it mean? There will be  ok;  I have chosen

for  this  one.  I  can  include  that  member  always,  because  it  contains  literally  a  here

, I  am calling this is the finite  sub cover from this family   for  the set

. That this belongs to  means, there is a finite cover like this ok. Now, all that

you have to do is put the extra member  also, remember  covers this portion.

(Refer Slide Time: 15:25)

So,  this  portion  overlaps  with  this  one  up  till  here  and  it  goes  up  to  .  So,

; now, I cannot say this is contained here unless I intersect with   ok; so,

that is contained inside , ok.

You can just put  also if you want, no problem ok. If   is the maximum of  and ,

this implies that   itself is inside  , up to   it  is there ok? If you see these two are both

intervals starting from ; so, intersection I am taking right. 

So, minimum of the two will be the intersection ok, look at the maximum;  is maximum of

this one, I have taken  and  maybe I should take minimum, then  will be inside a

definitely ok. So, this will imply that  is inside , because up to   is there ok, or it

may be up all the way up to ; if it is  and  is smaller than or equal to , in either case 

will be inside . 



So, if  is less than , then  will be always less than , this  is larger than , that is the whole

point.  That  contradicts  s  is  supremum of  .  No number bigger  than   will  be  inside  ,

because  is the supremum.

 Therefore,  must be equal to . Now, that completes the proof.
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So, the next thing is Heine-Borel theorem that a subset of  is compact if and only if it is

closed and bounded. So, this is what we wanted to prove now ok.
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So, we are going to use the earlier theorem here; namely, closed intervals are compact. Then

we  have  also  proved  yesterday  that  product  of  compact  sets  is  compact,  finite  product.

Therefore,  you can take  product  of  finitely  many closed  intervals,  take the  closed boxes

inside  , they are all compact; so, that is the thing that I am going to use now. See now

suddenly you have a lot of compact subsets in , right.

Once you have closed and bounded subsets of  all of them are compact; so many examples

you have now. A subset of  is compact if and only if it is closed and bounded ok. From

3.67 the only if part follows, once it is compact it is closed and bounded over.

Now, suppose you just  have a closed and bounded subset  ok that  is the way Weierstrass

started with hypothesis, because he was working only inside  anyway. So, he called by the

way he called these sets `limited sets'. So, there are so many different  words by different

authors. And so many, you know, dozens of people around the same time were working to

develop topology.

So, then there exists  such that  is contained inside , a large square or a cube

whatever any cube I am taking inside  ok. So, this is another way of looking at what is the

meaning of bounded set.



You can take a ball also centered at the origin, but balls  are always contained inside the

squares and squares are contained inside the balls larger and larger or smaller and smaller that

is  what  we have  seen in  a  picture right.  So,   is  contained inside some  ,  right?

Beacuse it is bounded. Now,  is closed, this is compact; so,  is compact. The proof is over.

Life was not so easy for people who started these concepts, but now for us these things look

so easy.
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Thus, we have plenty of examples of compact spaces as well as those which are not; all that

you have to take is a non-closed set, all that you have to take is a non-bounded set. Plenty of

non-compact spaces and plenty of compact spaces; so, the shape may vary whatever norm

you may like to take in . So, outside  of course, for other metric spaces and so on you

have to to be careful. All metric spaces one way will do, any non-closed subset of a metric

space cannot be compact, any non-bounded thing cannot be compact ok.
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An important  consequence  of  Heine-Borel  theorem is  that,  every  continuous  real  valued

function on a compact metric space attains its supremum and infimum; so, this is known as

Weierstrass theorem. So, this could have been actually the motivation, you know, for Borel to

come up with this thing.  Heine was independently working on his own.  And he had the

correct ideas and Borel expanded on them and came up with all this.

So, we shall prove here slightly more. You know slightly general result instead of just what is

stated?
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Every continuous function   from  to   on a compact space   attains its supremum and

infimum. See Weierstrass theorem was inside   and closed and bounded, we do not need

that.  Now,  we use  the  word  compact  and then we  can  go more general,  any  space,  not

necessarily metric. You see I am mixing now metric spaces and general spaces, I have told

you that, I want to study both of them simultaneously. 

You do not assume that  is a metric space. It is compact. Of course,  is a metric space in

its usual topology. Any continuous function from   to  , where   is compact attains its

supremum and infimum. To make sense supremum or infimum you have to come to  or into

some order topological space ok? And of course, least upper bound, greatest lower bound

such thing should be there ok?
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So, supremum is attained is the same thing as saying that it is maximum. The word maximum

is used only after the supremum is attained. Attained means what? It is actually a value ok;

supremum is thus the upper bound, least upper bound of all the values; it need not be a value.

So, here it is attained means, it becomes maximum, the image of one of the maxima points.

Similarly, infimum when it is attained it becomes minimum ok. 

So, put  equal to sup of all  belonging to  equal to inf of all  belonging to

, the supremum and infimum are defined for any set of points inside , including  this

may be , this may be , this may be , that is also allowed here ok. Since  is compact,

 is compact. By Heine-Borel theorem it is bounded right. Therefore,   and  are finite

numbers;  they are  the closure  points  of  ,  every supremum is a  closure point  of  the

corresponding set. 

So, this is a property of real numbers. what is the meaning of supremum ok? But  is also

closed, because it is a compact. Therefore, both  and  are in ; that precisely means that

they are values;  is equal to , it becomes a maximum;  equal to . So, it becomes

minimum alright?



Heine-Borel theorem has plenty of applications ok; so, here is one illustration I cannot go on

doing everything.
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On a finite dimensional vector space any two norms are similar. This was one of the theorems

that I promised you that I will prove. So, now, we can prove it.

Remember on , we had lots and lots of norms,  norm,  norm,  norm in general where

. And then we have the  norm also. So, we had seen that they are all similar, but there

may be many other norms. There are in fact, lots and lots of norms. This theorem says that on

a  finite  dimensional  vector  space  any  two norms  are  similar  ok?  So,  they will  have  all

geometric properties-- similarity. 

By fixing a basis, we can see that any finite dimensional vector space over   is  linearly

isomorphic  to  .  This  is  just  linear  algebra.  Therefore,  the statement  of  the theorem is

equivalent to the following. Now, instead of arbitrary vector space I can just assume we are

working in  and proceed to prove that any two norms on  are similar ok. 

So, do not worry about arbitrary vector spaces and so on. In , you can use coordinates etc,

everything you can use now. We shall show that any norm, I am just denoting it without any



suffix, is similar to the  norm ok? If everything is similar to  norm any two of them will be

also similar to each other, because similarity is an equivalence relation alright? So, let us

prove that this arbitrary norm on  is similar to the  norm.
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We shall show that any norm on  is similar to the  norm. That is we shall find constants

 and  positive such that , for every  in , ok?

So, start with a basis , vector space basis for . Now, for any  in , you can

write   as a linear combination of these standard basic vectors. So, let  ; put  

equal to the maximum of the norms of  with respect to the new norm that we are

going to estimate ok. 

So,  there  are  these   elements,  you take  the  maximum of  them none of  them is  .  So,

maximum is some positive number that is going to be our  Now, norm of , I have written 

as . Norm of that is less than or equal to .



Each of these  , I  will replace by the maximum number   here;  the   that is

nothing but the  norm of  ok? So, new norm is always less than or equal to this ; so,

one side inequality is established already ok.

On the other hand, as we have already observed that the unit sphere with respect to  norm

which we have denoted by  that is compact. And this inequality already implies that this

norm is continuous with respect to the  norm; therefore, we can apply Weierstrass theorem

ok?
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So, I repeat because of this inequality (24) what we get is that norm from  to  is

continuous. Therefore, Weierstrass theorem whatever we have proved ok, this norm attains

its infimum also on ; in any case the norm will never be  on a non-zero set of vectors that

is  .  So, this infimum will have to be strictly positive. In other words, what we have is

 positive for every  in this unit sphere  with respect to the  norm. 

Now take any  , you can write norm  equal to, (you know, you can divide and

multiply by  ok, because   is not 0), is equal to  . So, this is a constant



and this  is  inside  .  What  I  am telling  is  the norm of  the given element   is  equal  to

.

Now, the inside thing is in ; therefore, I can apply this inequality. So; that means, that this

is bigger than or equal to than  ; so, this is  ; so, combining (24) and (25) we get

whatever you wanted namely, (23).
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So,  what  is  the  corollary  now? There  is  a  corollary  here.  Any finite  dimensional  vector

subspace  of any normed linear space  is actually complete and a closed subspace of .

Start with  which is a normed linear space, take a finite dimension subspace . That will

be automatically complete and a closed subspace ok?

See vector spaces are never compact, but now they become complete and closed, how? The

first part follows from the previous theorem combined with the fact that similarity preserves

completeness and  norm on  is complete. You start with any norm on , you restrict it to

, but  is finite dimensional.



Therefore, the norm coming from this  is equivalent to say let us say  norm, but  norm

on a finite dimensional vector space what is finite dimensional? Some ; so, it is complete

right?

So, its completeness follows, because similarity preserves completeness; that we have seen.

The second part follows from a general principle; namely, if some subspace is complete then

it must be closed in any metric space ok? Completenes means what? You take the closure

point  there  is  a  sequence  converging  to  that,  but  every  convergent  sequence  is  a  quasi-

sequence. But by completeness, this sequence is convergent in the subspace itself.

You cannot have two different limits of a sequence inside a metric space. You started with a

closure point of the subspace,  may be in the larger space right. But there is a sequence inside

the smaller  space  that  is  converging  to  that  closure  point,  that  sequence  will  be  Cauchy

sequence.  So,  the  subspace  is  complete  means  what  now?  The  Cauchy  sequence  must

converge inside the subspace; so, that closure must be inside the subspce itself. So, this just

means that closure is equal to  itself. 

So, this part is a general property, it has nothing to do with  being finite dimensional. Finite

dimension vector spaces are similar to  ; therefore, they are complete. For that part, you

needed this theorem ok? Heine-Borel theorem or whatever alright.

So, we shall  continue a little bit of study of compact metric spaces and then come back again

to just compact a topological spaces ok next time.

Thank you.


