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Welcome to module 38 of Point - Set - Topology Part I. So far we have studied connectivity,

path connectivity, local connectivity, local path connectivity and so on. So, it is time again to

take up another very important concept, namely, compactness. Tagging along with it,  the

Lindelofness can also be studied, which is not all that important for us.  Quite often just like

you study connectivity  and  path  connectivity  together,  compactness  and  Lindelofness  go

hand in hand.

However, from the point of view of set topology, compactness is so important, if you try to

tell the story of compactness by which I mean how the concept developed and so on, it will

be half of the story of point set topology. So, so important is the compactness concept. I will

not be able to much of historical remarks presently, because quite often they can be done only

in an appropriate perspective, only after knowing what we wanted to do and what has been

done and so on. When questions like why this one, why that one? And so on, crop up,  you



can go back and dig up history, historical development motivations and so on. So, let us start

studying compactness in its earnest. 

Start  with the topological  space  ,  a  subset  of  ,  say,   will  be  called compact if  the

following happens. Suppose you cover  by open subsets of , some arbitrary open cover,

then it must admit a finite subcover. So, let me define all these things carefully: subcover,

open cover, what is the meaning of finite subcover and so on ok. 

So, a family  of subsets of  is called a cover for , (this I think we have defined earlier,

but let us recall it anyway), if   is contained inside the union of this family. It is called an

open cover if every member of this family, all these  s are open. So, one can have closed

coverings also. They seem to be not so important ok?

For a given set , by a subcover of of a family, we mean, first of all it must be a cover of ,

then you take a sub family of  which will be also a cover for the same set , such a thing

will be called sub cover. If this sub cover happens to be a finite or countable family, then we

will say that is a finite sub cover or a countable sub cover accordingly. 

So, once we have these definitions, a subset  is called compact if every open cover of  has

a finite sub cover  for it.  Likewise, we say   is Lindelof if every open cover of   has a

countable sub cover for it ok.

Deliberately I have not used the words `compact space' or `compact set' and so on. Whatever

you want to call it,  if you want to think of this as a subspace you are welcome, if you want to

think of this as set we are welcome, compact set or compact space both wording are allowed.

What I have defined here is compactness.  Similarly, Lindelofness here ok. However,  you

may wonder why the two wordings `compact  subset'  or `compact space'  mean the same.

Suppose this  is the whole of . Then all this definition makes sense right? Then we may

say that  is a compact space by itself. No subspace, no subset; a compact space.

So, in its own topology, take an open cover for X, any open cover you can extract a finite sub

cover. You may not be able to extract it by youself, the definition gives you a finite subcover

out of it. That is the whole point. So, so this is what I have repeated here namely you can call



a topological space compact or Lindelof space if it is compact Lindelof as a subset of itself

ok? 
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It is immediate that a subset   contained in   is compact or Lindelof if and only if it is

compact space (or Lindelof) space in its subspace topology. You take the subspace topology.

Then as a space it must be compact(or Lindelof). These two are equivalent. Because you have

an open cover, the open subsets coming from the larger space, intersect them with the given

set , they will cover and those are the open subsets in the subspace . So, these two notions

are same there is no difference between them. In particular you will see that once a space is

compact  it  does  not  matter  where it  is  contained inside as  a  subspace,  it  will  be always

compact. 

Suppose   is a compact space, suppose   is contained inside   as a subspace or   as a

subspace. In both the cases, it will be still compact subspace ok?
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Now, if you take a closed subspace of a compact space automatically it will be compact.

Similarly, if you take a closed subspace of a Lindelof space automatically it will be Lindelof.

So, how does one get it? Just add one extra open set namely the complement of the closed set.

That  will  become an open cover for the whole space.  From that  you can get a finite (or

countable) sub cover. Now throw away the extra set, complement of , you do not need it to

cover . So, you have still, you know finite (or countable) sub cover. So, that is all the trick

here. By extending the given cover for the subspace, which is a closed subspace by putting

one extra element namely the complement of that set. And then you can come back.
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Let   be  a  topological  space  and   be  a  base for  .  Then   is  compact  (respectively

Lindelof), [see, quite often,  whatever I do for compactness I can put Lindelof etc., inside a

baracket but not always, when it is not, I will mention that], if and only if every cover for 

from  members  of   admits  a  finite  (countable)  subcover.  You  see  in  the  definition  of

compactness you want to have every open cover should admit a finite sub cover, but here it is

a restricted thing. Here only members of  are used, they do not give all the open covers.

But if this condition is satisfied for members of  which is a sub class of open covers that is

enough is the claim. Suppose you take a covering of   with only members of   and they

admit a finite sub cover that is good enough is what this lemma says ok? 

So, this is the role of the base, to cut down our toil. You do not have to check it for all open

covers you have to just check it for covers whose members are coming from . This is the

gist of this lemma here ok.

The proof is very easy, one way is clear, namely if you take a cover out of  that will be also

an open cover in the general case. So, it must admit a finite sub cover ok. Now, suppose this

happens for only open covers with members coming from . Then why it should be true for

any general covering that is what you have to prove right? ok.
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So, let the condition hold and  be an open cover for  not necessarily from members of

. Then for each  must be inside one of the open sets here  ok, depends upon 

ok. But then  is a base means what? there must be an element   inside  such that   is

inside  contained in . Now if you vary  over all of , then 's is will cover . Now

by  this  condition  there  will  be  a  finite  cover  out  of  these  's.  Let  us  call  them

. But each   is contained in the corresponding  . Therefore,   is

contained in the union of these  . So, these were the members from the original cover

ok? 

If you replace   by infinity here you will get the proof of the corresponding statement for

Lindelofness. So, proof of for the Lindelof properties also same thing here ok.
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The  next  immediate  thing  is  the  following:  Under  a  continuous  map  compactness  and

Lindelofness are preserved. What is the meaning of this?  from  to  is a continuous map,

 is compact implies   is compact.   is Lindelof implies   is Lindelof. Just like

connectivity,  path  connectivity  etcetera  right?  Not  local  connectivity,  nor  local  path

connectivity you have seen. 

What does that mean? Immediately it means that under homeomorphisms compactness and

Lindelofness are preserved. In other words they are topological properties ok according to the

formal definition of topologiacal properties. 



(Refer Slide Time: 12:54)

Take  contained inside  contained inside , where  and  are topological

spaces. Suppose  is compact (respectively Lindelof). Suppose we have a surjective function

 from  to  with  restricted to  and  restricted to , are the subspace topologies and

this is a continuous function here. You do not need  to be defined on the whole of  to .

We have to show that  is compact if  is compact ok?  (respectively Lindelofness) Alright.
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So, how do you do that? Very easy. Start with an open cover  for , take 

, see  s are now open subsets in  ok and all that you have is  is contained in the union of

's, but if you intersect  with  this is an open subset in  in the subspace topology,  is

continuous,  inverse of that will be open inside  ok. And since this is a covering  inverse

of all these, their union is the whole of .

So, I have got an open cover for  ok, you can go back to topology  here ok, just for fun.

What you have to do, what  is  the meaning of  these are open subsets? Each open subset

, is equal to some  where  is open in . In any case these 's will now

cover , obviously being larger than the original subsets here ok.  itself is contained here.

So,  will be contained here also.

Therefore, there is a finite (respectively countable) subfamily,  contained inside , such that

 is contained in the union of 's,   over . This is by compactness (or Lindelofness) of .

But now you can come back because these things are larger than . So,  will be

contained inside the corresponding ’s, which is either finite cover (or a countable cover) ok.
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So,  that  is  the  consequence  of  this  elementary result  namely  under  continuous  functions

compactness is preserved, and  therefore, it is a topological property. In particular, it follows



that compactness of a subset   of topological space does not depend on how   is sitting

inside , I am repeating it again. Once  is homeomorphic to another  and  are sitting

wherever they like, as subspaces, if one is compact the other one is also compact. Over. This

is the same thing with Lindelofness, connectivity, path connectivity etc that we have studied.

They are all topological properties that is the whole idea. 

PLEASE  IGNORE  THE  SLIDE  TIME  FROM  16:23  to  22:17  WHICH  IS

MATHMATICALLY INCORRECT AND GO TO NO. THEOREM 3.64. 
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Now another  important  ah landmark result  finite  product  of  compact  spaces  is  compact.

Converse is easy why because if product is compact you can take the projection maps they

are open surjective therefore, each factor  is compact if the product if compact. The other



statement will all come just by this theorem itself inductively once I prove it for 2 then you

can use inductively right. 

For the proof of this theorem, see the modified lecture notes.
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The theorem is true for infinite products also and that goes celebrated theorem of Tychonoff,

but for that you will have to wait a little bit. 
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Now,  another  interesting  diversion  here.  The  following  result  has  a  flavor  of  Cantors

intersection theorem for complete metric spaces. Here there is no metric, no contraction, no

deltas and so on something funny happens, but you have to start with a compact topological

space ok.

So, let  be a compact topological space,  sequence of non-empty closed sets ok.

Non emptyness is obviously necessary for whatever I am trying to say. They are decreasing

sequences as well. They are closed subsets of the compact set. Then the conclusion is that

entire intersection is non-empty. 

You see  in  Cantor's  intersection  theorem finally,  you  had  a  unique  point  there,  but  non

emptiness was very important.

So, the same kind of conclusion can be got out of compactness instead of complete metric

space and so on. In the complete metric space you needed more stringent conditions. Herein,

there are much less conditions.

Apply De Morgan law it is a one line proof that too ok? If this is empty what does it mean?

the complement is the whole space. The complement of the intersection is the union of the



complements. What are the complements? They will form an increasing sequence of subsets

each of them open.

And they cover the whole space ; that means what? By a compactness at some finite stage

it must be equal to the whole space right? Some  will be equal to the whole space because

it  is  a  finite  cover.  But  then  what  happens  if  you  go  back  via  De  Morgan  law,  the

corresponding  is empty. That is a contradiction, because we assumed  are non-empty.

So,  you just apply De Morgan law you get the proof ok.
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So, like this we can go on taking some glimpse of compact spaces and so on. By the way

there is no such result for Lindelof spaces. 

So, let us take a look at metric spaces again and get some more hints for what kind of things

we can do with compact spaces ok. So, that is next time.

Thank you.


