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Welcome to module 37. Last time, we introduced the notion of local connectivity and local

path connectivity and proved a few results there. So, today, we will illustrative examples, or

counter-examples, or they are positive or negative examples and so on. 

The first example is what you have already met ok? It is very easy to check that it is locally

connected, but not locally path connected. This is very easy to check, namely, the co-finite

topology on, say, the set of integers or natural numbers, or any, countably infinite set ok? 

Countability is  important,  infinite also important  ok. If  you took a finite set  the co-finite

topology discrete topology. Discrete topology with more than one point is neither connected

nor  path  connected,  but  surprisingly,  because  points  are  open,  this  is  both  locally  path

connected  as  well  as locally  path connected so.  I  am not  interested  in  discrete  topology

alright.



So, the first thing is every nonempty open set will intersect every other nonempty open set in

the  co-finite  topology  because  the  complements  are  finite  right?  So,  a  finite  set  cannot

contain another set which has its complement finite. That is not possible when the whole

thing is infinite. So, any two open sets intersect. Therefore, there is no separation ok? That

means, that the space is connected. Similarly, it is locally connected also because every open

subset also has the same property, you cannot separate it out. 

You take any open set that itself will serve as a connected neighborhood inside that you have

to take a connect open set, but its already connected right? The subspace topology on any

subset  is  again  the co-finite  topology only if  it  is  uncountable  sorry,  it  is  countable  and

infinite. Therefore, this space is locally connected and connected. However, we claim that

every continuous function omega from closed interval  into the space is a constant.

Once you prove that, it follows that two distinct points cannot be connected by a path ok. So,

we are going to prove this strong property that the path connected components of this space

are singletons ok? Strongly  path-disconnected in that sense ok. 

(Refer Slide Time: 04:20)



So, let us see how we prove this one. Suppose, you have a path which is non constant. That

means what? The image should contain at least two points ok? Every point in  is a closed

point, singleton  is closed why? 

Because the complement is open that is all ok. It would follow that the closed interval  is

a  countable  disjoint  union of  proper  closed sets,  what  are those closed sets? Just  take  

inverse of singletons, singletons are closed.  is continuous,  is a closed subset as 

ranges over . The image of  contained inside  take the disjoint union, these are the

fibers after all. So, they disjoint right, disjoint union each of them is closed, what is ? 

is   the image, the points are varying over  ok, they are at least two of them ok?

 has been written as disjoint union of closed sets ok. One thing is clear namely, this 

cannot be finite why? If this  is finite, this will give you a separation of . But  is

connected so, there is no separation ok?

Because once  is finite,  you take one of them, everything is closed, the finite union of other

things also closed so, you can write as disjoint union of two nonempty closed subsets. Over.

But if  is infinite, then there is no contradiction ok. So,  may be connected, but you can

always write it as disjoint union of singleton sets for example, singleton sets are closed so,

that is not a contradiction ok.(Refer Slide Time: 07:01)



So,  what  are  we  going  to  do  now?  Somehow  I  want  to  get  a  contradiction  to  such  a

description: The first thing is that I notice   has to be infinite, but countable. What I am

going to  prove  is  the  following.  A general  statement  no closed interval   is  a

countable disjoint union of proper closed sets.  being a subset of  being countable, this

 will  be  countable  ok  therefore,  immediately  this  description  is  not  possible  is  the

conclusion, when I take  to be the interval . So, this general statement I am going to

do.

In this statement, note that countable means finite also which we have seen that finiteness is

not possible, that is easy because all intervals are connected. So, the point is now countable

infinite is not possible is what we have to prove. So, here we will have to use Baire's category

theorem in a clever way so, that gives you an opportunity to use Baire's category theorem so,

watch out.

Suppose you have   equal to a disjoint union of  's where each   is a closed proper

subset  of  ,  ok.  You see if  's  are empty and one of them is  ,  then there is  no

contradiction  so,  assuming  that  they  are  proper  that  is  important.  Proper  means  what?

Nonempty as well as not the whole space. Take   equal to the boundary of   by this I

mean the boundary points of  inside , they are all subspaces of  now, in the usual

topology of  . Take  's equal to boundary of   and take this   equal to union of all

these 's ok?

Note that since  is connected and each  is a closed subset of , no  is open. If 

is open, what happens? If one of them   is open, what happens? It is also closed I have

assumed right, each of  is close to begin with. So, proper nonempty closed and open subset

will contradict. So, since they are closed, they are not open is a consequence ok?

So, when you take interior, interior is a strictly smaller subset of . When you throw away

the interior from , what you get is the boundary, because 's are already closed, I do not

have  to  take  the  closure.  Remember,  what  is  the  boundary  points?  Boundary points  are

closure minus the interior. So, closure is  itself, interior is not the whole space.



So, interior may not be empty, but you throw away the interior, so, , the boundary of 's

are nonempty. Boundary 's would have been empty if  is open also. Therefore, each 

is nonempty. Boundary of a subset is always a closed subset of the set, the set is closed so,

therefore these are all closed subsets of  ok. 's are nonempty closed subsets ok, it also

follows that  is infinite, but we are not actually using this fact ok. 's are infinite means

what? 

Each of them I have proved that they are nonempty and to begin with, I have taken these

things are infinite, if this is finite, then we already know that the case is over ok, but this fact

we are not going to use ok. Right now, our argument will include this also anyway. 
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So, each  is nonempty close subset right, but now we have lost something because these

's do not cover  right, the  are covering  now, I have taken smaller subsets so,

what do I do with then? 

Take  which is equal to union of all 's right, how did I get 's? By deleting the interiors

of each  right. Therefore, this union is  minus union of interior of all 's is precisely

equal to   ok. Therefore, this is a close subset of  . Therefore, it is a complete metric

space. Now, using Baire's category theorem, we will arrive at a contradiction. How do we use



Baire's category theorem? Namely, if we show that each  has empty interior inside  ok?

then the proof will be over. This is very important because 's are boundary of , I have

removed the interior points there. So you may say it is over no? 

No. These interior points were inside . Now, I have a different subspace. We have, this

subspace namely , I am applying the Baire's category theorem to this complete metric space

 so, I have to show that each  has empty interior inside  ok? then the Baire's category

theorem says that countable union of such things cannot be the whole of  ok. So, that is the

end of the proof right? So, let us go ahead.
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How to show that  's have empty interior? Take any point in ; by the way what is the

topology? Topology is coming from  right, from , everything is a subspace of  right

so, take an open interval around a point, intersect it with , if it is contained inside  that

will  be a  point  in  the interior  ok.  Take an interval,  intersect  it  with  ,  show that  is  not

contained inside , then this will prove that, interior of  is empty. So, this should be done

for every point of .

What is  ? Boundary of  . Take a point and take an interval   around that one. By the

definition of boundary ok? Now I am using , a point of  is a point of  also, but it is a



boundary point of  . First you use that property that   is a boundary of   ok by the

definition of boundary,  must intersect both  and complement of  right? So, it intersects

the complement of  where? inside the closed interval  ok.

Hence, it must contain some point of some other  . Because the entire   is written as

disjoint union of 's. If a subset is not contained inside one particular , it must intersect

some other ,  ok?  Now, suppose J does not intersect the , boundary of , 

is the boundary to  ok? that means that it intersects interior of , alright. It intersects ,

it does not intersect the boundary so, what is left out? 

It must be interior of , but then, what happens? Interior of , this interior is taken inside

the closed interval , remember that, interior of , it is an open set, complement of  is

also an open set. If you take  intersection this and  intersection that, that will be the whole

of . I have not written  here because I am taking the interval  itself inside the

interval  ok. So, therefore, this will give you a separation of  and that is a contradiction.

Therefore, this  must intersect , the boundary of  ok?

So, what has happened? I started with an interval around a point in   that intersects  ,

, but these are disjoint sets right. Therefore, this J is not contained inside . So, there

is a point  after all, all of  is also contained inside  so,  intersection , there is a point

here, which is not inside . This shows that  has empty interior inside . 

That proves that no closed interval can be written as a countable union of disjoint you know,

of closed subsets, proper closed subsets. In particular, the co-finite topology on a countable

set is  not path connected, every path component is a singleton. 
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Let me give you some other example now. This is called the broom space. Let me show you

the picture here and then explain. So, I start with a closed interval. Let us call this  ok.

Here, I take the line segment between  and  in the plane. So, this is . This is

, this is . So,  and this is .



This is , this is , this is  and so on. So,  approaching  here, all

those points are joined to . So, it looks like a broom eh, this is the broom space. This is

the closed subset of , it is closed and bounded also ok? Whole thing is contained inside

the square . Clearly, it is star shaped at this point . Take any point, there is a line

segment to this point. Therefore, this is path connected. Therefore, this is connected.

So, why this example is there? For the reason that you know take a point here on the axis,

between  to  say let us take this itself namely, . If you take any neighborhood of that,

take a small ball around that and intersect with this space, you will have lots of these line

segment, disjoint sets no matter how small this ball you are taking (radius smaller than  ),

intersection with this space will be disconnected. Infinitely, many line segments will be there

along with a small line segment on the axis.

So, at this point, it is not locally connected or locally path connected, the same thing holds for

all  the  points  here  except  the  point  .  At  ,  it  is  clear  that  if  you  take  any

neighborhood, then you can take a small ball around that, then it will be star shaped again so,

there is no problem ok. So, that is the broom space here. So, it is path connected, it is not

locally path connected at any point on the x axis except at  . At least at   we have

seen it easily alright.
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So, let us go to slightly more complicatedness spaces namely, what I do? I take a small copy

of this broom space here again, I have not drawn all these lines here, they are there inside ok

so, this is a broom space B. So, instead of , I have made it  here ok, this is ,

this , this is three-fourth, 0 and so on, take half each time. Take the side also, like this

also make it half, keep making half, half like that. So, this will go on ad- infinitum, infinitely

many of these things will be there ok? 

Along with this point , just the point only at the end, there is no broom there left out. If

you come slightly out of that point to the left, you will have lots of brooms here, infinitely

many brooms ok. So, this is again, the whole thing is contained inside   ok and it is a

closed subspace. Remember I have not drawn these, there are from  , 1 this is  , this is

, you can join them, you have joined them all those things are there. So, this is

iterated boom space.
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So, here I have defined it. Denote the broom space defined above by  in the first one. Scale

it  down by a factor  of   and shift  it  at  the point  ,  so all  these points

approaching , to obtain . Let  be the point union of  and contains point  has

to be there ok, you take that one union along with all the 's ok.



Now, show that every open connected subset of B twiddle which contains  contains the

entire segment   ok, the entire line segment, on the  axis. However, show that

every neighborhood of   contains a connected neighborhood and hence,   is  weakly

locally connected at the point , but not locally connected at the point .

If you want an open connected set, you will have a problem. If you do not want open sub

connected set, just a connected neighbourhood, they are there, this is the whole idea. So, let

us try to see this one, at least some part well, after all I have left this as an exercise to you, but

let me just explain. So, first part is to show that every open connected subset of   which

contains , contains the whole line segment and therefore, it cannot be arbitrary small that

is all. You cannot have a connected open subset which is arbitrary small, if you show that

one. 

So, how do you show that? Go to this picture, you have taken an open connected subset 

around the point . There is an open ball around this point, right? Intersect with , it is

contained in  . This open contains infinitely many of these triangles here, representing the

copies of the broom, ok?

Nevertheless, what happens? Suppose you have come up till some point which the apex of

the nth broom. Then  will contain infinitely many segments of the  broom, line from

here-to-here half going so, this is precisely what I have. At some point ok, suppose this point

is there, then a small neighborhood of that point must be there in your open set  , then all

those line segments should be there. So, in order that those line segments are connected, you

have to go to the apex of  broom you have to go to the apex of that broom. 

That means suppose the point  is in  implies  is also

there. That means the line segment  is contained in . So, you just keep

repeating this till you conclude that this whole line segment  is contained in . All this

because it is connected and open. There is no other way to connect those successive points on

the axis.

Now, once this point is there, a small neighborhood around that will be there because I am

assuming openness, open connectedness, then there will be some line here, some point here



and the line all the way up to this one. So, this way you will end up here, these entire line

segment will have to be there in any connected open subset containing any of these points in

particular , ok.

You will have to keep coming backwards; forward you do not have to worry. If you take a

neighborhood here, you do not go forward, but you go all the way here that is a point. So, for

, the whole line segment will be there alright. So, connected open set is a problem. On

the other hand, take any point here on , take a neighborhood, now do not go backwards

all  the way, just  take the single boom to which this point  belongs or just the two to the

brooms that will be connected neighborhood. 

That is not an open set, you just take the broom only, do not take all these points up to broom

you  take  ok,  everything  forward  so,  that  will  be  connected  neighborhood.  It  is  a

neighborhood because a smaller open subset will be there, a small open subset will be there

which is not connected, but this is connected, and it is contained in the original neighborhood.

Therefore, this is low weakly locally connected at this point ok and not locally connected

alright.
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I come back to the topologists sign curve now, it will be very easy, but we will have to just

sum it up. The topologists sign curve. We seen that it is connected, but not path connected

that we have seen. Now, take any point p on the -axis part ok?  -coordinate -coordinate

to be  just for being safe. Then the ball  intersect with the topologists sine curve

consists of infinitely many disjoint arcs on the graph, along with one open segment on the -

axis.  

But  the  same  reason  that  we  have  discussed  for  the  broom  space  what  happens  is  the

topologists sine curve is not locally connected at any point on the -axis ok?
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Let us have a picture of this one first here. So, on the -axis here, you take any ball around

here, the ball should not be such that it contains the points  and  . So, I take the

ball of radius say . 
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Take a ball here, let us magnify it ok, to magnify it and look at it. what do you? This may be

your point and that means, epsilon ball, you let all these curves ok part of the curves, what

curve?  curve going up and down like this. I have drawn this one thick line, this is

not a thick line, this is just the union of infinitely many arcs like this coming close to the -

axis, that is why it looks thick that is all.

If you magnify further again, this taking a small ball here, you will have the same picture

again, there will be infinitely many components there. So, this is not even connected so, it is

not locally path connected either for every point on the -axis. So, this is similar to the broom

space there ok, but it has this property also is what I wanted to tell you. 

Thus, let us consolidate what are the things that we have done for topologist's sine curve. It is

neither locally connected nor locally path connected, just now we saw. Thus, topologists sine

curve serves as an example or you can say counter example to show that connectedness does

not imply path connectedness, local path connectedness or even local connectedness because

it is a connected space, but it is neither of any of these things.

The closure of a path connected set need not be path connected because the sine part sine

graph, is path connected part and its closure is the whole space and that is not path connected.

Finally, analogue of  is not valid for path connectedness. What was ? It says that if the

bottom space is connected, the fibers are connected of a quotient map, then the topological

space is connected.

So,  if  you  replace  path  connected  everywhere,  if  connectedness  is  replaced  by  path

connectivity in this theorem, as such it is false. So, that is the meaning of this one. So, all

these things we have seen ok. 
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Now, I will come to another important part here, maybe that is the last part for today. How to

use connectivity positively to derive some interesting results ok. So here is something. 

Look at the space  which is the union of the union of the two axis, -axis and -axis. If you

are bothered about to be too big and so on, cut it off:  and , ok? So, this is just 

-axis and -axis, -1 to 1 and -1 to 1. 

We can feel that this space  is not homeomorphic to any closed interval. You know that this

is a compact metric space,  apparently whatever topological properties that you have seen so

far will not be of any use in distinguishing them. Both of them are connected also, both of

them are path connected ok. So, what is that?

How to use connectivity to show that they are not homeomorphic? It is not homeomorphic to

a closed interval,  . This  I take because just model, you cannot take any closed

interval, they are all homeomorphic to each other, but they are not homeomorphic to these

space  ok. 

So, how to see that? Suppose you have a homeomorphism from here to here. Now, take a

point here, take its image, it may be any point here.  



Remove both of them from from the respective spaces, namely from the domain you remove

this point, from the co-domain remove the image of that point. Then the homeomorphism

whatever it is,  let us call it , restricts to the subspaces and gives a homeomorphism again. A

homeomorphism from  to  restricts to a homeomorphism from  to  for any subspace

 of  ok? So, that is easy to see, that is what I am going to use here. If I remove a point in

the interior of , then we know it is disconnected, has two components right? 

If I go here, will it always have two components that is the point right? So, what I want to do?

Immediately I see one nice way of looking at it, namely remove  from  here, the point

of  intersection  of  the  two lines.  Immediately  you  see  that  there  are  four  path connected

components for the complement. 

So, take a homeomorphism this way other way around  from  to remove the origin here,

remove the image of that here, image of that may be any point I do not know which point, I

am just removing one point from , what do I get? If the point I removed is one of the

end  points,  then  the  space  is  still  connected,  path  connected.  If  it  happens  to  be  some

somewhere in between namely , then it will have two components. But here in

the domain, I have four components. A homeomorphism has to induce what? Bijectivity of

the connected components, bijectivity of path connected components.  So, what is  wrong?

Namely our assumption is wrong that there is a homeomorphism from  to  ok? (Refer

Slide Time: 37:30)



So, that is the gist of this one,  to , that will be homeomorphism,

this has four components, this has at most two components, in some cases it may have only

one component so, that is the contradiction ok?
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Now, I have listed a number of exercises here. One of the exercises here let us say 3.35 for

example is directly from this one, from the last example that I gave you.
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What does it say? Take the English capital letters ok? As subspaces of your plane namely

, say,   etc., Look at all these, I claim that they are all homeomorphic to each

other  in  fact,  they  are  all  homeomorphic  to  an  interval,  easy  to  see  that  right,  you  can

straighten out these things that is the meaning. But none of them is homeomorphic to the

letter , can you see why? If there is a homeomorphism here, you remove a point here from

here ok, remove a point from here, what happens? That is still connected right.

But here, if the point has to be removed only from the interior so, what you should do? Start

with homeomorphism here to here, take an interior point here, remove it, there will be two

components. No matter what point you remove here, it has only one component from the

circle, from the shape , shape  you can think of a circle, it is homeomorphic to a circle,

remove one point is still connected. So, none of them is homeomorphic to this one. 

So, this is another example I am giving you here. So, using this idea, what I am telling you is

to classify all the letters. the 26 letters up to homeomorphism ok? Enjoy this exercise. 
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There are other things which you can have a look at ok. 
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So, this exercise for example, is about metric spaces and part of it, most of them are from

linear algebra and little bit of analysis. But last one is  etc, whatever you have



met last time, they are all locally path connected spaces, the previous exercise told you that

they are connected therefore, they will be path connected. 

So, the exercise here is to show that they are locally path connected, the challenge. So, all

these exercise, earlier exercises will help you to solve that.

Thank you. So, let us close it here.


