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Welcome  to  module  35  of  Point  Set  Topology  Part  I.  We  shall  continue  our  study  of

Connectedness. So, far things were not all that difficult, but now we are trying to take you a

little deeper into connectivity. Here is a result that can be used to prove connectivity of a big

class of interesting spaces. So, let us formally make a definition here. Once again, this is for

namesake only. Take any set theoretic function  from  to , for every  inside  look at all

points which are coming to  all points of  is coming to .

Namely  that will be called the fibre of  over . What are the fibres of ? They are all

inverse images of some point in . For example, if you take a point   such that there is no

point which is going to that point  will be empty. So, then I will say fibre of  at that

point   is empty. So, that is also allowed ok? It is purely set theoretic notion. There is no

other condition on . The word fibre is used in many higher mathematics, I am also used to

that. That is why I am putting that terminology here ok.



So, you can just write  for some  inside the codomain , then you do not have to use

this  fibre  one  alright.  Let   from   to   be  any  quotient  map now,  in  particular,   is

surjective ok. Suppose  is connected and all the fibres of  are also connected. Namely, I am

writing it to have just for definiteness sake, say  for every  is connected, they are all

connected. Then conclusion is that  is connected. 

You see what we have seen earlier is that if  is connected, then  is connected. This  is

a quotient map onto  . So,   is all of  . So, if   is connected   is connected and

 equal to . So,  is connected. 

We are looking at the converse here.  is connected. You do not immediately conclude that

 is connected, but if the fibres are all connected, there is this extra condition, then you can

do the other way around and conclude that  is connected ok. 
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So, it  is  quite  a profound result,  but  the proof is  very easy here.  All  that  I  do is  take a

separation of . Instead of , I will call it , does not matter. Take a separation of ,

look at all points  below ok. So, there are points of   such that the fibre over that point is

contained inside  ok.



Denote it by , I am just defining . This  is a subset of . So, this I do for both  equal to

1 and 2 ok. As such you know 's could be empty. there could be nothing right? But here I

am using two things namely  is surjective, indeed, it is actually a quotient map and fibres are

all connected. 

So, together, these things will imply, first of all that these  's are nonempty.   the

whole space  that is comes that comes from the surjectivity and sorry. Before that  of

each point namely fibres of  being connected, must be inside  or . Therefore 

will be the whole of  ok? What we claim is that  is whole of  right? Because each

 is contained is either  and . So, union of all  is the whole of . Therefore,

 will be union of  and  ok. 

What we want to show is this: we started with  as a connected space, but this is a separation

of .  That will be contradiction. If  is nonempty  will come to something it must be

either  or  it has to be inside . Similarly,  of a point in  will have to be inside .

So,  and  are nonempty ok. Now, why  is closed?  is nothing but the entire of

. And to begin with we start  and  for closed subsets. 

Inverse image of a closed set is closed implies the corresponding set is closed in the quotient

topology, under this quotient map. Therefore, both  and  are closed. 

Clearly, a fibre cannot be both  and . It has to be in one of them only right.? So, 

has to be empty. So, all this show that  is a separation for  and that is a contradiction,

why a contradiction? Because we started with a wrong assumption that  has a separation ok.



(Refer Slide Time: 07:15)

As I said, as an  immediate corollary we get a big theorem here. Take any finitely many

connected spaces and then take their product that is connected. How do we do this? For two

at a time then by induction, it will follow for any finite product right. For two at a time how

do you do? Look at  connected  connected, look at  to  the projection map or you

can take   to   also no problem. That  projection map is an open map.  Any open

surjective map is a quotient map. 

So, you can apply the previous theorem to this quotient map.   is connected, what are the

fibres of the projection? Fix a  , all points   coming to   is nothing but  ,

which is homeomorphic to . Therefore, each fibre is connected because I started with the

assumption that both  and  are connected.
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So,  that  is  what  we will  do  now namely  what  are  called  the  general  linear  groups,  the

orthogonal groups, the unitary groups and so on they are all inside  matrices. So, let us

make a  formal  introduction  to  these  things which are  very important  in  mathematics,  in

central mathematics. Of course, my  is any field to begin with, but finally, when you talk

about topology and so on I am taking   as either real numbers or complex numbers, ok?

Remember that. (Refer Slide Time: 09:32)



So,  this  notation   denotes  the  set  of  all   matrices  with  entries  in  .

Clearly under entrywise addition and scalar multiplication, it is a vector space of dimension

 over . This is part of your linear algebra. Therefore, by choosing an appropriate and

convenient basis we can identify this vector space with , the Cartesian co-ordinate space

because the dimension is , ok? There are many different ways of doing this.

For example, you may write the rows of  as follows: there are n rows and m columns ok?

One single row is a vector inside . Write the next row, you know, on the right of the first

one and so on instead of writing the one below the other. So, write them side by side, so that

it will look like a  ordered tuple. For example, if you have  matrix, then you will get

a -vector ok? A -vector followed by another -vector, we get a -vector and so on.

So, that will give you an identification of this vector space  with , ok?  It

just depends upon which way you want to write. Any of them will be as good as any other

one. So, you better choose according to your convenience appropriate to the context, but you

should keep in mind that your original space has a matrix structure for many other purposes.

So, in order  to remind you that instead of writing  here, see  once you write 5 into 3

as 15, the original data 3 and 5 are lost. 15 could be 1 into 15 also. So, you write it as .

So, this is just a reminder that it is  matrix ok. It is a very clever notation, it is not mine

it is there in the literature. Instead of , you write . As a Euclidean space they will be

the same, as vector  space they are the same ok as matrices this should be different  than

 or  and many other possibilities.
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Various  subsets  of   are  of  interest  in  higher  mathematics.  Now, if  this  notation

 stands for  , ok. So, instead of writing two of them I am just writing  ; that

means,  they  are  square  matrices.  Here  are  few  of  the  subspaces.  I  am  giving  you  the

definitions. Look at all square matrices of size n such that their determinant is not equal to .

It is the same thing as all those which are invertible. That is .

Now   is  a  subspace  of  ,  i.e.,  with  real  entries  such that   is  identity  and

determinant of  is . If you do not put this condition determinant of  equal to , then this is

called  orthogonal group. So, this is a special orthogonal group ok. 

 is all those complex n cross n matrices such that  is identity ok. Here also you can

have another subspace,  , wherein you put one extra condition viz., determinant of  

equal to  ok? I am trying to give you only a few of them here, but I just told you two more

also here. 

Note that the first one  is an open subset of  of all  matrices. Why? It is

given by the condition determinant of   not equal to . That just means that inverse image

under the function determinant which is a polynomial function of all non zero scalars. You



know determinant is a function into  right?  is either  or . So, not equal to  means that

is an open set. So, it is inverse image of that open set ok. So, this is an open set.

Whereas, for similar reasons viz.,  and  are given by equations, therefore 

and  are closed subsets of , where  is either  or . This notation is  and this

is  is conjugate transpose ok.

So, I claim that our previous theorem along with the corollary about finite products can be

used to prove that all these three here at least and then many more are all connected spaces.

So, let me present a proof of one of them the first one ok? When   is  , I am taking the

 ok? If you take  then you are in danger. Then you have to put determinant

of  equal to  or  that will have two different components ok?
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The space , what is the space? It is an open subspace of the Euclidean space. This is

connected for all  . So, just a temporary short notation  equal to , depends

upon   right.  So,  I  am  going  to  prove  this  inductively.  So,  let  us  first  prove  this  for

 is just . 



What is determinant of a  matrix? It is just the element itself and that should not be .

So, it  is  just   which is   ok.  We know that   is  connected.  Dropping out

finitely  many points  from   etc,  they  are  all  connected  that  we  have  seen

already ok.

This formula is nothing but the last column of the matrix . Writing the last column is what?

You know, it  is  a  bunch of coordinate functions its  one of the coordinate functions.  So,

therefore,  is open surjective mapping right? It is an open surjective mapping, but we are not

interested in the whole space here. We are interested in only an open subset of that 

ok? 
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So, all this I have told you that it is just a quotient map here because it is a projection map to

the last  columns ok.

In particular,   is  an open mapping now.   is  an open subset of matrices.  So, it

follows that phi restricted to  is also an open mapping, but what is the image? If you take

an invertible matrix that is determinant of  is not equal to , each column is a nonzero vector

that is a minimum condition. Therefore, the last column which is ( ), it is a nonzero vector.

Therefore, the function is taking value inside . So, I will write it as .
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What we want to say is that this is also surjective namely from  namely form  to

. So, this is surjective is what I want to say. Why? Take a nonzero vector inside , use

your linear algebra to complete it to a basis, how many elements will be there in the basis?

Exactly  element. 

The first vector you write it as the last one  is equal to the last vector then write the other

 vectors, all column vectors you treat them as column vectors you will get  matrix.

That matrix, has columns which together span the whole of , because that is a basis. This is

what you have chosen. 

So, the matrix will be invertible. Determinant is not equal to , which is the same thing as a

matrix invertible. So, what we have got is an element  inside  whose  column is . It

just means that if you take , it is . Therefore,   restricted to  to  is surjective.

We are  exactly  in  the  situation  of  theorem 3.34  that  we have  just  proved  right.  It  is  a

surjective  open  mapping.  So,  it  is  a  quotient  map  onto  ,  what  is  it?

 which we know is connected.

What are the fibres of this ? If we show they are connected then you are in a good shape you

can immediately conclude that  is connected by this theorem ok? 
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Therefore,  what  we  need  to  show is  that  each  fibre  here,   this  is  connected.  By

definition, what is ? All those  matrices inside  such that when evaluated on

, which is same thing as taking the last column, will be equal to . This  is fixed right?

First thing I want to show is that all the fibres are homeomorphic to each other. What is the

idea? Finally, I want to prove that they are connected right. So, if I prove one of them is

connected all others will be connected. So, let me prove that they are homeomorphic to each

other which is much easier to prove. 
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So, what you have to do? Start with any nonzero vector  choose  in , this we have done

earlier such that  is equal to . Possible because we know  surjective map ok?

It then follows that the left multiplication by   defines a homeomorphism of   onto  

itself. Take an element here multiplied it by  on the left. What is the inverse map? Multiply

by . So, this is a homeomorphism of the whole space to itself  to . But I want to say

that this fibre goes to that  fibre.  What is  an element of this fibre? All those   such that

. What is this one? All those say  such that  is equal to  right.

So, if you take an element  here,   will have this property. So, homeomorphism is very

easy to verify here. 

Now comes the point.  I  have to just  prove that  one of the fibres namely   this  is

connected. You can see why I have done this one in the next step; why the choice of   is

prefered here, namely this allows us to apply the induction, the induction hypothesis ok.
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So, the claim is that   is connected. So, but what is it? This is I am just repeating it

here, what is it? All those  in  this is the definition. I want to say that this

saying is homeomorphic to . Suppose I have proved this one then the poof of

the theorem is over ok. This was the only thing that was needed; once one fibre is connected,

all the fibres are connected. So, I can apply the previous theorem along with the induction

hypothesis it follows that  is connected.

So, all that I have to prove is that this set, this space is homeomorphic to this space. Look at

what happens  is in  means the last column is  ok. So, this  has a last

column this is a big 0, this is a block matrix by the way this is  ; this is

;  this is   and this is  .  It  is  a block matrix ok. So, this whole

column is just  that is the meaning that it is  right?

This is some block  which is an  matrix and this is another just row here

. So, every  which has this form namely inside  has this form, but

determinant of this one is nothing but determinant of   times  . Therefore,  this must  be

nonzero the moment this is nonzero it is an element of , and what is this one this is just

an element of .



Projection map here is to first  coordinates here  coordinates that is

continuous. Projection to these coordinates also continuous. So, breaking   into two parts

like  that is a continuous function this is what I am putting here. The  inverse is also

continuous from the whole things to this. Therefore, this becomes a homeomorphism, this

completely proves that  is connected ok.

So, here little  bit  by little  bit,  many interesting topology is  in  involved here ok. So,  the

method employed here is  educative  not  only the information that  you have got now that

 is connected ok. If you have learned this proof nicely it will help you in long way for

many other things. Now, I will have to go to another important thing here now ok.
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This  time  I  may  take  a  little  more  time.  The  topologist's  sine  curve.  Remember  that  I

promised that I will show you why the closure of a path connected space may not be path

connected. That is what we are coming to here. This example will serve that purpose, but pay

attention to this example because it will serve as counter example in many situations for us

ok. For us as well as for other people also. 



So, this is something you have to study properly. What is this sine curve? It is starting with

the graph of a sine function only thing is instead of   we are taking  , the   is

inverted here therefore, the domain should should exclude 0, at 0 it is not defined.

So, I do not want to take , I just take  that is enough for me, you can take 

for other purposes. 0 excluded 1 included. no problem. Take the function  and look

at its graph, the graph is , points like that which will be a subset of  ok. So, the

whole topologist's sine curve is going to be a subset of  ok? you can just look at this curve

first. Denote it by .
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But  now we want  to  do  something  more  here,  namely,  we want  to  put  the  axis  part

between . So,  where  is between  and . This a the closed line segment

ok, lying on the  axis;  . Denote it by  . So, you take the union of this sine curve

namely the graph of  , union with   that is my   ok. So, this is by definition the

topology is a sine curve ok.

Being the graph of a  continuous function defined on an open interval which is connected ok?

this graph  is connected actually it is path connect this whole thing is a path it is also path

connected alright. So,  is connected and  is the whole of . So, this is what one has to see



here. I will show you the diagram here then it will be very clear to you. So,  is connected 

is  actually  path connected,  but  I  am not going to use that  just  connectivity is  enough to

conclude that  is connected.
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Therefore, our theorem says that this space is connected.  itself is path connected because it

is actually its it is itself is a path ok, except that in the definition of path you must have closed

interval. So, here the domain is not a closed interval.

So, what do you do?  Suppose you take a point here from any other point here to any other

point here you can take the restriction of the function  that will give you a path here.

So, this is path connected alright? ok. So, since  is the whole of , it follows that  is not

closed ok? Of course, it is easily seen that  being a line segment that is closed ok? We claim

that both  and  are path components of  that will show that  is not path connected ok?
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So, this is the final thing we will prove that  and  are both path components. They are path

connected because,  is a closed interval homeomorphic a closed interval and the other one 

is the image of a continuous function defined on an interval one side open and the other side

closed does not matter, it is an interval ok. So, what we have to show is that take any point on

 and any point on , these two points you take and show that there is no path from one to

the other ok? That will show that these two are, what? Path components.

See, if you have taken  what you have to do? bigger than  you have to take a point of .

So, you must be able to join a point of  to a point of . So, I say there is no such path ok?

So, if I prove this then the claim that   and  are path components follows therefore,   is

not path connected, it has exactly two path components. 

Suppose you have such a path. Path means now what? Some continuous function defined on

a closed interval.

I can change the closed interval to any , there is no problem ok by a reparameterization.

So, you can assume that there is a path  from  to  such that  is inside  and 

is inside  ok. So, remember  is a subspace of  ok. Look at the projection map  from 



to  onto the axis, the  projection, the first projection  going to . Then  this

is what this is the coordinate of ,  is inside . So, the coordinate will be .

Because the whole of  is just  ok? So,  is .  will be something

on the -axis in the open interval . So, it is positive always. It is less than 1 less than or

equal to 1, but it  is not equal to  . it  is some positive number ok? By intermediate value

theorem, see this map is from where from  to  ok. So, the codomain is . So, intermediate

value theorem for this map  from  to  ok? Not from  to .

But I have taken  to  and then composed with . So,  to , it follows that for every

integer  ,  there  exist   belonging to  the  interval   (why I  want  to  take  this  one?

Because I want this  converge to  as  tends to infinity that is why I have made this choice)

such that  is equal to .  

So, what is the statement? Statement is look at   and  between these two

there must be some point take that point conveniently   will go to that  point that  is the

intermediate  value  theorem;   is  equal  to  this  point   divided by an odd integer,

, ok.

Once you have chosen this way what happens is  will be what? Its -coordinate is this

point. So, I have to write the -coordinate here once -coordinate is written this  is some

point inside the graph right? It will look like this ok. See, what I am try trying to do is if the

points are on the -axis, I ignore them, after all the curve starts from  and ends at .

So, between them you have lots of parts of this path   this the graph of  . So, it must be

somewhere in this graph that is what I want.

(SOME IRRELEVANT REPETITION In other words all these points see this point is the

 right. Now, when you come here this must be because intermediate value theorem it

must be  of something, this must be omega of something, this must be another of something

because they are all once I have chosen this one the point must be between these two, point

must be between these two like this I keep choosing them closer and closer that is the whole.)



So, once you have chosen that way, the -coordinate of this point will be 

ok? So, what is   of this one? It will be   ok and  -coordinate is this one. So, that is

precisely what I have been pointing out.  -coordinate will be somewhere here or here or

between these two points with that;  -coordinate will be somewhere here the  -coordinate

will be that this that, this that does not matter. All of them may be this point ok.

But I will always choose something after that here one here which I can always choose them

alternatively that is why I have taken its as odd numbers all these things must be there. 
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All that happens is by continuity if you take the limit of this one it must converge to some

point in  what is that point? Actually it must be . This  it must be right.  is ,  it

must come to that one because this goes to 0, but this point is plus minus 1, plus minus 1, this

is not a convergent sequence.

So, this contradicts the continuity of omega. So, it proves that there is no path alright. So, that

shows that theroem 3.30 is valid for path connected spaces; the closure of a path connected

space need not be path connected.



Let us show that this same example gives you a counter example for non validity of theorem

3.34 for path connected spaces, ok. So, it does not take much time. So, I will show that one

also. Now put  equal to the topologist's sine curve and  equal to the closed interval 

and  from  to , the first projection, which is a quotient map. That we know because it is

surjective open mapping ok?

We know that  is not path connected right, but  is path connected  is just  ok. What

happens to the fibres? The fibres of 0, take any point between   is  nothing but the

component B 0 cross minus 1 plus 1. So, this is path connected; what is   of any other

point  where  is not equal to , look at this picture.
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There the only the sine curve which is a graph. The graph means for each point  only one

point here; each point gives only one point. What is it? . Therefore, the inverse

image under the projection is precisely one point here. The fibres of each point between 0

open to 1, are all singletons. So, they are also path connected. 

So,  the  hypothesis  is  satisfied,  everything  is  satisfied  yet  the  conclusion  is  wrong  ok.

Conclusion says that   is path connected, but that is wrong. Therefore, the theorem is not

valid for path connectivity ok? 



So, this example, you know, has a very peculiar property. You take a small neighborhood of

this point on the -axis here, take a small neighborhood then look at the intersection of this

entire thing there, it will have lots of segments of this sine curve infinitely many of them.

They are all disjoint with each other. 

Every point on the -axis every neighborhood no matter how small the neighborhood is has

this property. It is the union of all segments disjoint arcs, of course not exactly straight line

segments. Except one, they are part of this sine curve right. So, this phenomena we want to

study and make it into a property namely locally disconnectivity or locally connectivity that

will be the next topic, we will do it next time.

Thank you.


